
PRESENTS

Vitess security audit
In collaboration with the Vitess maintainers, Open Source Technology Improvement Fund and The
Linux Foundation

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: June 5, 2023

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:adam@adalogics.com
mailto:david@adalogics.com

Vitess Security Audit, 2023

Table of contents
Table of contents 1
Executive summary 2
Notable findings 3
Project Summary 4
Audit Scope 4
Threat model formalisation 5
Fuzzing 14
Issues found 16
SLSA review 38
Conclusions 40

1

Vitess Security Audit, 2023

Executive summary
In March and April 2023, Ada Logics carried out a security audit of Vitess. The primary focus of the
audit was a new component of Vitess, VTAdmin. The goal was to conduct a holistic security audit
which includes multiple disciplines to consider the security posture from different perspectives. To
that end, the audit had the following high-level goals:

1. Formalise a threat model of VTAdmin.
2. Manually audit the VTAdmin code.
3. Manually audit the remaining Vitess code base.
4. Assess and improve Vitess’s fuzzing suite.
5. Carry out a SLSA compliance review.

These five goals are fairly different. While they allowed the auditors to evaluate the security posture
of Vitess from different perspectives, they also offered a level of synergy; Ada Logics found two
CVE’s during the audit which the threat model goal helped to assess. The threat model was also a
force-multiplier for the fuzzing work that led to the discovery of a fewmissed edge cases when
fixing the two CVE’s.

The audit started with a meeting between Ada Logics, the Vitess maintainers and OSTIF. After that,
all three parties met regularly to discuss issues and questions as they arose during the audit. Ada
Logics shared issues of higher severity during the audit.

In this report, we present the work and results from the audit. The audit was funded by the CNCF
who hosts Vitess as a graduated project.

Results summarised
12 security issues found

2 CVEs assigned

Formalisation of VTAdmins threat model

3 fuzzers added to Vitess’s OSS-Fuzz integration

2

Vitess Security Audit, 2023

Notable findings
Themost notable findings from the audit are “ADA-VIT-SA23-5, Users that can create keyspaces can
deny access to already existing keyspaces” and “ADA-VIT-SA23-12, VTAdmin users that can create
shards can deny access to other functions”. These two issues allowed amalicious user to create a
resource that would then subsequently disallow other operations for other users. For example, a
user could create a malicious shard that would prevent other users from fetching or creating
shards. The issues would disallow actions against other resource types as well, thus resulting in a
denial of service attack vector. The issues were more significant for Vitess deployments that include
the VTAdmin component, since a user with the lowest level of privileges in VTAdmin could cause
denial of service for all other users in the deployment.
The root cause of the two issues were at the Topology level in Vitess.

Vitess created an advisory for each issue and assigned CVE’s for both advisories:

ID CVE Severity

ADA-VIT-SA23-5 CVE-2023-29194 Moderate

ADA-VIT-SA23-12 CVE-2023-29195 Moderate

3

Vitess Security Audit, 2023

Project Summary
The auditors of Ada Logics were:

Name Title Email

Adam Korczynski Security Engineer, Ada Logics Adam@adalogics.com

David Korczynski Security Researcher, Ada Logics David@adalogics.com

The Vitess community members involved in audit were:

Name Title Email

Deepthi Sigireddi Project Lead & Maintainer Deepthi@planetscale.com

Andrew Mason Maintainer Andrew@planetscale.com

Florent Poinsard Maintainer Florent@planetscale.com

Veronica Lopez Contributor Veronica@planetscale.com

Dirkjan Bussink Maintainer Dbussink@planetscale.com

The following facilitators of OSTIF were engaged in the audit:

Name Title Email

Derek Zimmer Executive Director, OSTIF Derek@ostif.org

Amir Montazery Managing Director, OSTIF Amir@ostif.org

Audit Scope
The following assets were in scope of the audit.

Repository https://github.com/vitessio/vitess

Language Go, Typescript

The full Vitess repository was considered in scope, however the main focus of the audit
was VTAdmin which is located at
https://github.com/vitessio/vitess/tree/main/go/vt/vtadmin.

4

https://github.com/vitessio/vitess/tree/main/go/vt/vtadmin

Vitess Security Audit, 2023

Threat model formalisation
In this section we outline the threat model of Vitess’s VTAdmin component. We first outline
the core components of VTAdmin. We then cover how it interacts with the internal
components of Vitess. Next, we specify the threat actors that could have a harmful impact
on a VTAdmin deployment. Finally we exemplify several threat scenarios based on the
observations wemade when outlining the core components and the specified threat
actors.

We used the following sources for the threat modelling:
● Vitess’s documentation including README files from the Vitess repository
● Vitess’s source code at https://github.com/vitessio/vitess
● Feedback from Vitess maintainers

The threat model is aimed at three types of readers:
1. Security researchers who wish to contribute to the security posture of Vitess.
2. Maintainers of Vitess.
3. Users of Vitess.

We expect that the threat model evolves over time based on both how Vitess and adoption
evolve. As such, threat modelling should be seen as an ongoing effort. Future security
disclosures to the Vitess security team are opportunities to evaluate the threat model of
the affected components.

Most compromises of VTAdmin have the goal of compromising the full Vitess deployment.
As such, the threat model of a Vitess deployment and VTAdmin are closely aligned, but
they are also different. Other components of Vitess have different attack vectors, threat
actors and security designs. The threat model in this report is solely for Vitess’s VTAdmin
component.

VTAdmin architecture
VTAdmin is a component for managing Vitess clusters. It is intended to be used by
administrators, as the name suggests. As such, non-admin users should not be able to
perform the actions that the admin users can.

VTAdmin consists of two components:
1. A web interface - VTAdmin-web
2. A server - VTAdmin-api

5

https://github.com/vitessio/vitess

Vitess Security Audit, 2023

The web interface connects to the server which in turn forwards the requests to the Vitess
internals:

From https://vitess.io/docs/17.0/reference/vtadmin/architecture/

Authentication and authorization
VTAdmin does two things when receiving incoming requests: 1) It first authenticates the
request, and 2) it then checks the authorization level for the user sending the request. In
VTAdmin, authentication is the task of obtaining the actor that is sending the request, and
authorization evaluates whether the actor has permission to make the request. Vitess calls
authenticated users “actors”. Once VTAdmin has obtained an actor from the incoming
request, VTAdmin validates the actor against the RBAC. As such, the flow of handling the
permissions of incoming requests looks as such:

Authentication
Authentication in VTAdmin has the purpose of answering the question ofwho is sending a
request. VTAdmin does not have a default authenticator, so users are required to
implement their own via the Authenticator interface:
https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/g
o/vt/vtadmin/rbac/authentication.go#L37. Vitess links to an example authentication
plugin which is available here:
https://gist.github.com/ajm188/5b2c7d3ca76004a297e6e279a54c2299. This example
plugin extracts the actor from either the context of a request or from a cookie.

6

https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/go/vt/vtadmin/rbac/authentication.go#L37
https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/go/vt/vtadmin/rbac/authentication.go#L37
https://gist.github.com/ajm188/5b2c7d3ca76004a297e6e279a54c2299

Vitess Security Audit, 2023

When a Vitess administrator adds an authentication plugin, VTAdmin-api adds it as a
middleware at the http mux layer. VTAdmin-api does this in vitess/go/vt/vtadmin/api.go,
when the routes are initialized:

First VTAdmin-api checks if the user has registered an authentication plugin:

And later, it gets added to the http mux layer:

Authorization
Once a request has been authenticated, it can be authorized. In VTAdmin, authorization
checks whether an actor can perform an action against a given resource. The logic is
implemented here: https://github.com/vitessio/vitess/tree/main/go/vt/vtadmin/rbac.

VTAdmin checks RBAC rules in the route handlers with a call to IsAuthorized, for
example:
https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/g
o/vt/vtadmin/api.go#L755

func (api *API) GetClusters(ctx context.Context, req *vtadminpb.GetClustersRequest)

(*vtadminpb.GetClustersResponse, error) {

span, _ := trace.NewSpan(ctx, "API.GetClusters")

defer span.Finish()

clusters, _ := api.getClustersForRequest(nil)

vcs := make([]*vtadminpb.Cluster, 0, len(clusters))

for _, c := range clusters {

if !api.authz.IsAuthorized(ctx, c.ID, rbac.ClusterResource,

rbac.GetAction) {

continue

}

7

https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/go/vt/vtadmin/api.go
https://github.com/vitessio/vitess/tree/main/go/vt/vtadmin/rbac
https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/go/vt/vtadmin/api.go#L755
https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/go/vt/vtadmin/api.go#L755

Vitess Security Audit, 2023

vcs = append(vcs, &vtadminpb.Cluster{

Id: c.ID,

Name: c.Name,

})

}

return &vtadminpb.GetClustersResponse{

Clusters: vcs,

}, nil

}

Authentication and authorization are done at the VTAdmin-api level, not VTAdmin-web;
VTAdmin-web is merely a client. In other words, authentication and authorization are not
enforced when using the web UI - VTAdmin-web - but when the web UI communicates with
the server.

If a threat actor is able to perform an action that they have not been granted access to via
RBAC rules, that is a breach of security. An RBAC permission should only allow a user to
carry out the actions against the resources that match the RBAC rules specified by the
cluster admin.

Authentication and Authorization threat scenarios
Having defined how authentication and authorization work in VTAdmin, we now
enumerate a list of threat scenarios and risks concerning VTAdmin.

Users can claim to be a user that they are not
If users are able to claim to be someone they are not, they can launch a number of
different attacks against the cluster. For example, by claiming to be a user with higher
privileges, they are potentially able to elevate their RBAC permissions. Or the user could
disguise themselves under the pretence of another user when performing reconnaissance
against the cluster or exploiting a vulnerability.

Users can perform actions that they do not have permission to perform
VTAdmins RBAC has twomain goals:

1. Users should be able to perform the actions that they have been permitted to.
2. Users should not be able to perform actions that they have not been permitted to.

The first goal is related to both the reliability of VTAdmin as well as its security posture; If a
cluster admin has granted permissions to a user to perform an action against a resource,
the user should not be prevented from doing said action. Issues with this goal is related to
the reliability and not security of VTAdmin with one exception:

8

Vitess Security Audit, 2023

● If User A has permissions to perform an action but cannot perform it because User
B has disabled this functionality for User A, and User B should not be able to
disable this.

Goal 2 is fully related to the security posture of VTAdmin: If any user can carry out an action
that they have not been granted permission to, then it is a breach of VTAdmin-api’s RBAC.

An attacker could do this by using tilizing existing RBAC privileges for a given action and
resource to obtain permissions to perform actions against resources that the attacker does
not have permission to. For example, if a user is able to utilize create privileges to cause
Vitess to delete a resource, the user has elevated their privileges. The root cause of such an
attack scenario is likely to be an implementation error.

The role of VTAdmin and Vitess’s attack surface
VTAdmin adds a new, more granular user access control than Vitess has previously had. In
a deployment without VTAdmin, a user with permission to perform one action against one
resource can perform all actions against all resources. VTAdmin introduces granular
permission controls. This may cause users to over-permit access to keep permissions at
the same level of simplicity - ie. allow users either full access or none. To this end, users
should be well advised in maintaining a well-configured RBAC policy.

Threat actors
A threat actor is an individual or group that intentionally attempts to exploit
vulnerabilities, deploys malicious code, or compromise or disrupt a VTAdmin deployment,
often for personal gain, espionage, or sabotage.
We identify the following threat actors for VTAdmin. A threat actor can assumemultiple
profiles from the table below; For example, a fully untrusted user can also be a contributor
to a 3rd-party library used by VTAdmin.

Actor Description Have already
escalated
privileges

Fully untrusted
users

Users that have not been granted any
permissions and that the Vitess cluster admin
does not know the identity of.

No

Limited access
users

Users that have been granted some RBAC
permissions but not others. Note that this
actor is always awarded and never obtained.
For example, a fully untrusted user can seek

No

9

Vitess Security Audit, 2023

to become a limited access user, but this
would be a security breach performed by the
fully untrusted user actor.

Contributors to
3rd-party
dependencies

Contributors to dependencies used by Vitess. No

Actor with local
network or local
file access

An actor that has breached some security
boundaries of the environment to get to the
position of having access to the local network
or file system.

Yes

Well-funded
criminal groups

Organized criminal groups that often have
either political or economic goals.

No

Trust boundaries
A software trust boundary is a boundary within a software system that separates trusted
components and actors from untrusted ones. In this section we enumerate the trust
boundaries for VTAdmin. We first consider the trust boundaries of VTAdmin-web and then
of VTAdmin-api.

VTAdmin-web
VTAdmin-web is meant to be deployed in a trusted environment, meaning that an attacker
needs to compromise the security measures of the environment to gain access to
VTAdmin-web. There are two security measures that an attacker can compromise, 1) the
file system of a running VTAdmin deployment, and 2) an app that is responsible for
authenticating the VTAdmin-web client.

File system
Trust increases when an actor obtains access to the local file system. An attacker with local
access may be able to access VTAdmin-web. In this case, the trust boundary is the local file
system.

10

Vitess Security Audit, 2023

.

Compromising existing app
Another use case of VTAdmin-web is to integrate it into an existing web app, where the
existing web app already contains its own authentication mechanism. As such, users first
have to authenticate by way of the existing app to access VTAdmin-web. In this case, a trust
boundary exists between the internet and the existing web app:

11

Vitess Security Audit, 2023

VTAdmin-api
The threat model of the VTAdmin-api has one trust boundary between the web ui and the
VTAdmin-api. Once a request has been authenticated and authorized, it will not cross any
further trust boundaries.

The requests made by VTAdmin-Web are unauthenticated and unauthorized until
VTAdmin-api authenticates and authorizes them. In other words, the request becomes
trusted after it passes VTAdmin-api.

12

Vitess Security Audit, 2023

Attack surface
A software attack surface refers to all possible entry points, vulnerabilities, and weak
points within a software system that can be targeted or exploited by attackers to
compromise its security. In this section we detail the attack surface of VTAdmin.

API endpoints
VTAdmin exposes a series of HTTP endpoints that handle a wide range of different
operations, and they are plausible to a wide range of attacks. An attacker will need to be
able to send requests to the VTAdmin-api server or have access to an authenticated
VTAdmin-web client, but once they have obtained that, the attack complexity is simple; An
attacker will launch an attack through requests to the server.

3rd-party dependencies
Security issues in VTAdmins 3rd-party dependencies can have a negative impact on
VTAdmin. This can be achieved in several ways; For example, a threat actor could
deliberately contribute vulnerable code that has a negative impact on VTAdmins users.
VTAdmins dependencies are open source libraries most of which accept community
contributions, and carefully placed vulnerabilities in some dependencies would make
exploitation of VTAdmin users possible. Alternatively, VTAdmins dependencies could have
vulnerabilities that a threat actor knows exist but does not place in the code. Threat actors
can obtain information of vulnerabilities in public registries and assess whether projects
use the vulnerable version. In either case, a threat actor can use a vulnerability in a
3rd-party dependency to escalate privileges and cause harm to VTAdmin users.

Local attacker
An attacker who has compromised the machine running VTAdminmay escalate privileges
by listening on the network. For example, VTAdmin-api connects to Vtctld over GRPC. At
this stage the request is already authenticated, and if an attacker can find a way to read
traffic, they are potentially able to bypass authentication and assume the highest level of
permissions that the RBAC can grant.
A local attacker with limited control over the file system can have a high impact, but the
attack surface is small; VTAdmin does not rely heavily on the file system, and an attacker’s
options are therefore limited, however, an impactful vector could be controlling the
rbac.yamlwhich could allow an attacker to assign permission to themselves, thus
controlling the authentication at the highest possible level.

13

Vitess Security Audit, 2023

Fuzzing
As part of the audit, Ada Logics assessed Vitess's fuzz test suite with the purpose of
improving it to cover critical parts of VTAdmin.

Vitess has done extensive fuzzing work; It carried out a fuzzing audit in 2020 which added
coverage to complex text processing routines. Vitess is integrated into OSS-Fuzz which
allows the fuzzers to run continuously and notify maintainers in case the fuzzers find bugs.
The Vitess source code and the source code for the Vitess fuzzers are the two key software
packages that OSS-Fuzz uses to fuzz Vitess.

The current OSS-Fuzz set up builds the fuzzers by cloning the upstream Vitess Github
repository to get the latest Vitess source code and the CNCF-Fuzzing Github repository to
get the latest set of fuzzers, and then builds the fuzzers against the cloned Vitess code. As
such, the fuzzers are always run against the latest Vitess commit.

This build cycle happens daily and OSS-Fuzz will verify if any existing bugs have been fixed.
If OSS-fuzz finds that any bugs have been fixed OSS-Fuzz marks the crashes as fixed in the
Monorail bug tracker and notifies maintainers.

In each fuzzing iteration, OSS-Fuzz uses its corpus accumulated from previous fuzz runs. If
OSS-Fuzz detects any crashes when running the fuzzers, OSS-Fuzz performs the following
actions:

1. A detailed crash report is created.
2. An issue in the Monorail bug tracker is created.
3. An email is sent to maintainers with links to the report and relevant entry in the bug

tracker.

OSS-Fuzz has a 90 day disclosure policy, meaning that a bug becomes public in the bug
tracker if it has not been fixed. The detailed report is never made public. The Vitess
maintainers will fix issues upstream, and OSS-Fuzz will pull the latest Vitess master branch
the next time it performs a fuzz run and verify that a given issue has been fixed.

Vitess's fuzzers reside in CNCF's dedicated fuzzing repository,
https://github.com/cncf/cncf-fuzzing, in which the community maintains them. In
addition, community members also maintain the build, so that the fuzzers keep running, in
case upstream code changes break the build.

During the audit, Ada Logics wrote 3 new fuzzers:

14

https://github.com/cncf/cncf-fuzzing

Vitess Security Audit, 2023

Name URL Running on
OSS-Fuzz

1 FuzzKeyspaceCreation https://github.com/cncf/cncf-fuzz
ing/blob/83bad32323d4a351571
7c5f144faf38b2c7d20cb/project
s/vitess/fuzz_keyspace_creation
.go

Yes

2 FuzzShardCreation https://github.com/cncf/cncf-fuzz
ing/blob/83bad32323d4a351571
7c5f144faf38b2c7d20cb/project
s/vitess/fuzz_shard_creation.go

Yes

3 FuzzTabletCreation https://github.com/cncf/cncf-fuzz
ing/blob/bfec152c497f6d8e0786
d2f89d99788b890e847f/projects
/vitess/fuzz_tablet_test.go

Yes

The fuzzers target APIs at the topology server level responsible for creating keyspaces,
shards and tablets and follow a similar pattern. Each fuzzer tests whether it can create a
resource that will block subsequent operations against the given type. For example, the
fuzzer for the shards will attempt to create a shard and afterwards test if operations - such
as get-operations - against shards are rejected or fail. The fuzzers do not target the newly
written VTAdmin code base, but they are still relevant for VTAdmin. In fact, during the
auditing of the VTAdmin web interface, Ada Logics found two vulnerabilities with root
cause at the topology level that were triggerable from VTAdmin. The two vulnerabilities
allow users to create invalid keyspaces and shards that will block future operations against
keyspaces and shards. An attacker could trigger these by creating the type with a
well-crafted name. To test exhaustively for malicious names, Ada Logics wrote the three
fuzzers. This proved fruitful instantly, as the shard fuzzer foundmore special cases in the
shard name than were found during the manual auditing.

Ada Logics added the three fuzzers to Vitess's OSS-Fuzz integration, allowing them to run
continuously and test for more special cases as well as code changes.

15

https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_keyspace_creation.go
https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_keyspace_creation.go
https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_keyspace_creation.go
https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_keyspace_creation.go
https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_keyspace_creation.go
https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_shard_creation.go
https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_shard_creation.go
https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_shard_creation.go
https://github.com/cncf/cncf-fuzzing/blob/83bad32323d4a3515717c5f144faf38b2c7d20cb/projects/vitess/fuzz_shard_creation.go
https://github.com/cncf/cncf-fuzzing/blob/bfec152c497f6d8e0786d2f89d99788b890e847f/projects/vitess/fuzz_tablet_test.go
https://github.com/cncf/cncf-fuzzing/blob/bfec152c497f6d8e0786d2f89d99788b890e847f/projects/vitess/fuzz_tablet_test.go
https://github.com/cncf/cncf-fuzzing/blob/bfec152c497f6d8e0786d2f89d99788b890e847f/projects/vitess/fuzz_tablet_test.go
https://github.com/cncf/cncf-fuzzing/blob/bfec152c497f6d8e0786d2f89d99788b890e847f/projects/vitess/fuzz_tablet_test.go

Vitess Security Audit, 2023

Issues found
Here we present the issues that we identified during the audit.

ID Title Severity Fixed

1 ADA-VIT-SA23-1 Missing documentation on deploying
VTAdmin-web securely

Moderate Yes

2 ADA-VIT-SA23-2 Insecure cryptographic primitives Informational Yes

3 ADA-VIT-SA23-3 SQL injection in sqlutils Informational Yes

4 ADA-VIT-SA23-4 Path traversal in VtctldServers
GetBackups method

Moderate Yes

5 ADA-VIT-SA23-5 Users that can create keyspaces can deny
access to already existing keyspaces

Moderate Yes

6 ADA-VIT-SA23-6 VTAdmin-web ui is not authenticated by
default

Moderate No

7 ADA-VIT-SA23-7 Critical 3rd-party dependency is archived Low No

8 ADA-VIT-SA23-8 VTAdmin not protected by a rate limiter Moderate No

9 ADA-VIT-SA23-9 Profiling endpoints exposed by default Moderate Partially

10 ADA-VIT-SA23-10 Unsanitized parameters in html could
lead to XSS

Low Yes

11 ADA-VIT-SA23-11 Zip bomb in k8stopo Low No

12 ADA-VIT-SA23-12 VTAdmin users that can create shards can
deny access to other functions

Moderate Yes

16

Vitess Security Audit, 2023

ADA-VIT-SA23-1: Missing documentation on deploying
VTAdmin-web securely

ID ADA-VIT-SA23-1

Component VTAdmin

Severity Moderate

Fixed in:
https://vitess.io/docs/17.0/reference/vtadmin/operators_guide/#best-practices

We recommend adding a document on how to securely deploy and use VTAdmin. The
purpose of this document is to provide a single source of actionable steps to use VTAdmin
securely. The Vitess documentation currently contains limited information about the RBAC
of Vitess, which is positive, however we consider the documentation incomplete. Lack of
complete documentation on VTAdmins security could result in users unknowingly using
VTAdmin in a way that is known to be insecure, and is either not documented, or the user
will have to read the docs in full to find out that their deployment is insecure.

A security best practices document outlines the properties that Vitess considers insecure
for users. For example, users wishing to write an authentication plugin would benefit from
a general security best practices checklist. At the moment, Vitess does not offer guidelines
on writing a secure plugin. Vitess provides an example - which is positive - however, the
example demonstrates a minimum viable authenticator that has not been hardened for
security; For example, the actor name is sent in plain text, and there is no minimum length
required for the actor name.

17

https://vitess.io/docs/17.0/reference/vtadmin/operators_guide/#best-practices

Vitess Security Audit, 2023

ADA-VIT-SA23-2: Insecure cryptographic primitives
ID ADA-VIT-SA23-2

Component Multiple

Severity Informational

Fixed Yes

Vitess uses insecure hashing functions in a number of places across different packages.
Usage of insecure hashing functions should be justified, and preferably in the code where
they are used. Vitess worked on clarifying all usages and found that all uses of insecure
hashing functions fall in one of two categories: they are either not cryptographic
primitives or Vitess are bound to use a specific hashing algorithm to comply with MySQL’s
interface. This table illustrate how each case is categorized:

Component Usage

1 MySQL Protocol To implement MySQL handshake

2 Vindexes Non-cryptographic hash

3 Evalengine To support MySQL built-in functions

4 Tmutils Non-cryptographic hash

5 S3 Backup Storage Non-cryptographic hash part of the S3 API

As such, this issue did not require any code changes, and it has been kept here in the
report as a reference for users that have internal policies that are sensitive to insecure hash
functions. Vitess did remove the use of MD5 in Tmutils1, but this was due to the code not
being used rather than a security fix.

1: MySQL handshake
Vitess’s mysql package implements a function that computes the hash of a mysql
password using SHA1. SHA1 has been broken since 2004, deprecated by NIST since 2011,
and security researchers have proven collisions in practice2.

2 https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
1 https://github.com/vitessio/vitess/pull/12999

18

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://github.com/vitessio/vitess/pull/12999

Vitess Security Audit, 2023

In the case of Vitess’s mysql package, SHA1 is used to hash a password which we consider
security sensitive data. We consider this a security issue.

We recommend using a secure hashing algorithm.

The issue exists in vitess/go/mysql/auth_server.go in ScrambleMysqlNativePassword:

https://github.com/vitessio/vitess/blob/58e2719069c35c2820e1bf33324f27c3fb5852f1/go/mysql/a
uth_server.go#L251

func ScrambleMysqlNativePassword(salt, password []byte) []byte {

if len(password) == 0 {

return nil

}

// stage1Hash = SHA1(password)

crypt := sha1.New()

crypt.Write(password)

stage1 := crypt.Sum(nil)

// scrambleHash = SHA1(salt + SHA1(stage1Hash))

// inner Hash

crypt.Reset()

crypt.Write(stage1)

hash := crypt.Sum(nil)

// outer Hash

crypt.Reset()

crypt.Write(salt)

crypt.Write(hash)

scramble := crypt.Sum(nil)

// token = scrambleHash XOR stage1Hash

for i := range scramble {

scramble[i] ^= stage1[i]

}

return scramble

}

2: Vindexes
https://github.com/vitessio/vitess/blob/c43a162ea567f47a89b8d4a506d2995740737b79/g
o/vt/vtgate/vindexes/hash.go#L139

var blockDES cipher.Block

func init() {

var err error

blockDES, err = des.NewCipher(make([]byte, 8))

if err != nil {

panic(err)

}

Register("hash", NewHash)

}

19

https://github.com/vitessio/vitess/blob/main/go/mysql/auth_server.go
https://github.com/vitessio/vitess/blob/58e2719069c35c2820e1bf33324f27c3fb5852f1/go/mysql/auth_server.go#L251
https://github.com/vitessio/vitess/blob/58e2719069c35c2820e1bf33324f27c3fb5852f1/go/mysql/auth_server.go#L251
https://github.com/vitessio/vitess/blob/c43a162ea567f47a89b8d4a506d2995740737b79/go/vt/vtgate/vindexes/hash.go#L139
https://github.com/vitessio/vitess/blob/c43a162ea567f47a89b8d4a506d2995740737b79/go/vt/vtgate/vindexes/hash.go#L139

Vitess Security Audit, 2023

func vhash(shardKey uint64) []byte {

var keybytes, hashed [8]byte

binary.BigEndian.PutUint64(keybytes[:], shardKey)

blockDES.Encrypt(hashed[:], keybytes[:])

return hashed[:]

}

func vunhash(k []byte) (uint64, error) {

if len(k) != 8 {

return 0, fmt.Errorf("invalid keyspace id: %v", hex.EncodeToString(k))

}

var unhashed [8]byte

blockDES.Decrypt(unhashed[:], k)

return binary.BigEndian.Uint64(unhashed[:]), nil

}

3: Evalengine
https://github.com/vitessio/vitess/blob/a502fceda310886223342020136db5718ace34a5/g
o/vt/vtgate/evalengine/fn_crypto.go#L67

func (call *builtinSHA1) eval(env *ExpressionEnv) (eval, error) {

arg, err := call.arg1(env)

if err != nil {

return nil, err

}

if arg == nil {

return nil, nil

}

b := evalToBinary(arg)

sum := sha1.Sum(b.bytes)

buf := make([]byte, hex.EncodedLen(len(sum)))

hex.Encode(buf, sum[:])

return newEvalText(buf, defaultCoercionCollation(call.collate)), nil

}

https://github.com/vitessio/vitess/blob/a502fceda310886223342020136db5718ace34a5/g
o/vt/vtgate/evalengine/fn_crypto.go#L39

func (call *builtinMD5) eval(env *ExpressionEnv) (eval, error) {

arg, err := call.arg1(env)

if err != nil {

return nil, err

}

if arg == nil {

return nil, nil

}

b := evalToBinary(arg)

sum := md5.Sum(b.bytes)

buf := make([]byte, hex.EncodedLen(len(sum)))

hex.Encode(buf, sum[:])

return newEvalText(buf, defaultCoercionCollation(call.collate)), nil

20

https://github.com/vitessio/vitess/blob/a502fceda310886223342020136db5718ace34a5/go/vt/vtgate/evalengine/fn_crypto.go#L67
https://github.com/vitessio/vitess/blob/a502fceda310886223342020136db5718ace34a5/go/vt/vtgate/evalengine/fn_crypto.go#L67
https://github.com/vitessio/vitess/blob/a502fceda310886223342020136db5718ace34a5/go/vt/vtgate/evalengine/fn_crypto.go#L39
https://github.com/vitessio/vitess/blob/a502fceda310886223342020136db5718ace34a5/go/vt/vtgate/evalengine/fn_crypto.go#L39

Vitess Security Audit, 2023

}

https://github.com/vitessio/vitess/blob/641e5c6acc2345a4920d22745a7f9dbeb19e39c5/g
o/vt/vtgate/evalengine/compiler_asm.go#L3007

func (asm *assembler) Fn_SHA1(col collations.TypedCollation) {

asm.emit(func(env *ExpressionEnv) int {

arg := env.vm.stack[env.vm.sp-1].(*evalBytes)

sum := sha1.Sum(arg.bytes)

buf := make([]byte, hex.EncodedLen(len(sum)))

hex.Encode(buf, sum[:])

arg.tt = int16(sqltypes.VarChar)

arg.bytes = buf

arg.col = col

return 1

}, "FN SHA1 VARBINARY(SP-1)")

}

https://github.com/vitessio/vitess/blob/641e5c6acc2345a4920d22745a7f9dbeb19e39c5/g
o/vt/vtgate/evalengine/compiler_asm.go#L2992

func (asm *assembler) Fn_MD5(col collations.TypedCollation) {

asm.emit(func(env *ExpressionEnv) int {

arg := env.vm.stack[env.vm.sp-1].(*evalBytes)

sum := md5.Sum(arg.bytes)

buf := make([]byte, hex.EncodedLen(len(sum)))

hex.Encode(buf, sum[:])

arg.tt = int16(sqltypes.VarChar)

arg.bytes = buf

arg.col = col

return 1

}, "FN MD5 VARBINARY(SP-1)")

}

4: Tmutils
https://github.com/vitessio/vitess/blob/d1685d96bd7c2a57fc48a7e42ac38e4897741824/g
o/vt/mysqlctl/tmutils/schema.go#L206

func GenerateSchemaVersion(sd *tabletmanagerdatapb.SchemaDefinition) {

hasher := md5.New()

for _, td := range sd.TableDefinitions {

if _, err := hasher.Write([]byte(td.Schema)); err != nil {

panic(err) // extremely unlikely

}

}

sd.Version = hex.EncodeToString(hasher.Sum(nil))

}

21

https://github.com/vitessio/vitess/blob/641e5c6acc2345a4920d22745a7f9dbeb19e39c5/go/vt/vtgate/evalengine/compiler_asm.go#L3007
https://github.com/vitessio/vitess/blob/641e5c6acc2345a4920d22745a7f9dbeb19e39c5/go/vt/vtgate/evalengine/compiler_asm.go#L3007
https://github.com/vitessio/vitess/blob/641e5c6acc2345a4920d22745a7f9dbeb19e39c5/go/vt/vtgate/evalengine/compiler_asm.go#L2992
https://github.com/vitessio/vitess/blob/641e5c6acc2345a4920d22745a7f9dbeb19e39c5/go/vt/vtgate/evalengine/compiler_asm.go#L2992
https://github.com/vitessio/vitess/blob/d1685d96bd7c2a57fc48a7e42ac38e4897741824/go/vt/mysqlctl/tmutils/schema.go#L206
https://github.com/vitessio/vitess/blob/d1685d96bd7c2a57fc48a7e42ac38e4897741824/go/vt/mysqlctl/tmutils/schema.go#L206

Vitess Security Audit, 2023

5: S3 Backup Storage
https://github.com/vitessio/vitess/blob/adb2535cf79926d2d9ecf9710a280d657103f74a/go
/vt/mysqlctl/s3backupstorage/s3.go#L253

func (s3ServerSideEncryption *S3ServerSideEncryption) init() error {

s3ServerSideEncryption.reset()

if strings.HasPrefix(sse, sseCustomerPrefix) {

sseCustomerKeyFile := strings.TrimPrefix(sse, sseCustomerPrefix)

base64CodedKey, err := os.ReadFile(sseCustomerKeyFile)

if err != nil {

log.Errorf(err.Error())

return err

}

decodedKey, err := base64.StdEncoding.DecodeString(string(base64CodedKey))

if err != nil {

decodedKey = base64CodedKey

}

md5Hash := md5.Sum(decodedKey)

s3ServerSideEncryption.customerAlg = aws.String("AES256")

s3ServerSideEncryption.customerKey = aws.String(string(decodedKey))

s3ServerSideEncryption.customerMd5 =

aws.String(base64.StdEncoding.EncodeToString(md5Hash[:]))

} else if sse != "" {

s3ServerSideEncryption.awsAlg = &sse

}

return nil

}

22

https://github.com/vitessio/vitess/blob/adb2535cf79926d2d9ecf9710a280d657103f74a/go/vt/mysqlctl/s3backupstorage/s3.go#L253
https://github.com/vitessio/vitess/blob/adb2535cf79926d2d9ecf9710a280d657103f74a/go/vt/mysqlctl/s3backupstorage/s3.go#L253

Vitess Security Audit, 2023

ADA-VIT-SA23-3: SQL injection in sqlutils
ID ADA-VIT-SA23-3

Component sqlutils

Severity Informational

Fixed in: https://github.com/vitessio/vitess/pull/12929

The sqlutils package contains an SQL Injection vulnerability. The root cause of the
vulnerability is that sqlutils will generate an sql query without sanitising the input thus
essentially allowing the user to control the full query.

https://github.com/vitessio/vitess/blob/8263d6301ce1809891afb27c85294fcb3572395e/go
/vt/external/golib/sqlutils/sqlutils.go#L423

func WriteTable(db *sql.DB, tableName string, data NamedResultData) (err error) {

if len(data.Data) == 0 {

return nil

}

if len(data.Columns) == 0 {

return nil

}

placeholders := make([]string, len(data.Columns))

for i := range placeholders {

placeholders[i] = "?"

}

query := fmt.Sprintf(

`replace into %s (%s) values (%s)`,

tableName,

strings.Join(data.Columns, ","),

strings.Join(placeholders, ","),

)

for _, rowData := range data.Data {

if _, execErr := db.Exec(query, rowData.Args()...); execErr != nil {

err = execErr

}

}

return err

}

The vulnerable code was not used in any Vitess release and was removed from the project.

23

https://github.com/vitessio/vitess/pull/12929
https://github.com/vitessio/vitess/blob/8263d6301ce1809891afb27c85294fcb3572395e/go/vt/external/golib/sqlutils/sqlutils.go#L423
https://github.com/vitessio/vitess/blob/8263d6301ce1809891afb27c85294fcb3572395e/go/vt/external/golib/sqlutils/sqlutils.go#L423

Vitess Security Audit, 2023

ADA-VIT-SA23-4: Path traversal in VtctldServers GetBackups
method
ID ADA-VIT-SA23-4

Component vtctld server

Severity Moderate

Fixed in: https://github.com/vitessio/website/pull/1471

A path traversal vulnerability exists in the VtctldServers GetBackupsmethod from a path
being created from parameters of the incoming requests. This allows a request to pass a
value that could traverse the storage.

https://github.com/vitessio/vitess/blob/aa87bc4e9f05e3de3955e9641799eca9114d83bb/g
o/vt/vtctl/grpcvtctldserver/server.go#L1161

func (s *VtctldServer) GetBackups(ctx context.Context, req

*vtctldatapb.GetBackupsRequest) (resp *vtctldatapb.GetBackupsResponse, err error) {

span, ctx := trace.NewSpan(ctx, "VtctldServer.GetBackups")

defer span.Finish()

defer panicHandler(&err)

span.Annotate("keyspace", req.Keyspace)

span.Annotate("shard", req.Shard)

span.Annotate("limit", req.Limit)

span.Annotate("detailed", req.Detailed)

span.Annotate("detailed_limit", req.DetailedLimit)

bs, err := backupstorage.GetBackupStorage()

if err != nil {

return nil, err

}

defer bs.Close()

bucket := filepath.Join(req.Keyspace, req.Shard)

span.Annotate("backup_path", bucket)

bhs, err := bs.ListBackups(ctx, bucket)

if err != nil {

return nil, err

}

totalBackups := len(bhs)

if req.Limit > 0 {

totalBackups = int(req.Limit)

}

24

https://github.com/vitessio/website/pull/1471
https://github.com/vitessio/vitess/blob/aa87bc4e9f05e3de3955e9641799eca9114d83bb/go/vt/vtctl/grpcvtctldserver/server.go#L1161
https://github.com/vitessio/vitess/blob/aa87bc4e9f05e3de3955e9641799eca9114d83bb/go/vt/vtctl/grpcvtctldserver/server.go#L1161

Vitess Security Audit, 2023

ADA-VIT-SA23-5: Users that can create keyspaces can deny
access to already existing keyspaces
ID ADA-VIT-SA23-5

Component VTAdmin

Severity Moderate

Fixed in: https://github.com/vitessio/vitess/pull/12843

Users that can create keyspaces via the VTAdmin-web UI can specify a name that prevents
the endpoint at /keyspaces from displaying any keyspaces.

If a user creates a keyspace from /keyspaces/create in VTAdmin-web and the name
contains the character “/”, then no keyspaces will be displayed at /keyspaces.

In this screenshot, Ada Logics have created a keyspace named a/a, and 6 keyspaces exist:

25

https://github.com/vitessio/vitess/pull/12843

Vitess Security Audit, 2023

If we check the developer tools, we see we get an error:

HttpResponseNotOkError: [status 500] /api/keyspaces: unknown rpc error:

code = Unknown desc = node doesn't exist:

/vitess/global/keyspaces/KEYSPACE_NAME/Keyspace

If a single keyspace returns an error, VTAdmin-api does not return any keyspaces. The
below code is responsible for fetching the existing keyspaces:
https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/g
o/vt/vtadmin/cluster/cluster.go#L1141

func (c *Cluster) GetKeyspaces(ctx context.Context) ([]*vtadminpb.Keyspace, error) {

span, ctx := trace.NewSpan(ctx, "Cluster.GetKeyspaces")

defer span.Finish()

AnnotateSpan(c, span)

if err := c.topoReadPool.Acquire(ctx); err != nil {

return nil, fmt.Errorf("GetKeyspaces() failed to acquire topoReadPool:

%w", err)

}

resp, err := c.Vtctld.GetKeyspaces(ctx, &vtctldatapb.GetKeyspacesRequest{})

c.topoReadPool.Release()

if err != nil {

return nil, err

}

var (

m sync.Mutex

wg sync.WaitGroup

rec concurrency.AllErrorRecorder

keyspaces = make([]*vtadminpb.Keyspace, len(resp.Keyspaces))

)

for i, ks := range resp.Keyspaces {

wg.Add(1)

go func(i int, ks *vtctldatapb.Keyspace) {

defer wg.Done()

shards, err := c.FindAllShardsInKeyspace(ctx, ks.Name,

FindAllShardsInKeyspaceOptions{})

if err != nil {

rec.RecordError(err)

return

}

keyspace := &vtadminpb.Keyspace{

Cluster: c.ToProto(),

Keyspace: ks,

Shards: shards,

26

https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/go/vt/vtadmin/cluster/cluster.go#L1141
https://github.com/vitessio/vitess/blob/da1906d54eaca4447e039d90b96fb07251ae852c/go/vt/vtadmin/cluster/cluster.go#L1141

Vitess Security Audit, 2023

}

m.Lock()

defer m.Unlock()

keyspaces[i] = keyspace

}(i, ks)

}

wg.Wait()

if rec.HasErrors() {

return nil, rec.Error()

}

return keyspaces, nil

}

In the first chunk of highlighted code, rec records an error of a single keyspace. In the
second chunk of highlighted code, GetKeySpaces return nil and the error of the keyspace
that had the error.

This is a security issue because a user can control whether VTAdmin-api returns the
existing keyspaces thus enabling a denial-of-service attack vector. From the point of view
of the threat model, this is a breach of security, because the user that creates the faulty
keyspace has been granted permission to create keyspaces - not to prevent other users
from viewing the existing keyspaces.

The /topology route shows the existing keyspaces correctly.

The /workflows and /schemas apis get denied too, when a user creates a keyspace
containing the “/” char:

This issue was assigned CVE-2023-29194.

27

Vitess Security Audit, 2023

ADA-VIT-SA23-6: VTAdmin-web ui is not authenticated by
default
ID ADA-VIT-SA23-6

Component VTAdmin

Severity Moderate

Fixed No

VTAdmins web ui is not authenticated by default. As such, any default installation is
insecure by default. The immediate impact is that the web ui is fully exposed to any user
that has access to the domain and port hosting the Web ui. This can allow a threat actor to
achieve elevated privileges by getting access to a system running VTAdmin-web. For
example, if the deployment is exposed to the internet, any untrusted user could achieve
the level of privileges of the web ui that they can locate. It is likely that VTAdmin-web ui is
exposed on the internet given that the web ui and VTAdmin-api are designed to be
deployed on different domains.

This is not a code vulnerability with high severity but a security issue related to VTAdmins
default settings. Missing authentication is a security issue related to VTAdmins design.

We understand from internal discussions during the audit that Vitess wishes to allow as
flexible a usage of the web ui as possible which authentication-by-default is
counter-productive to. However, from the perspective of security, we recommend an
authentication-by-default design that can be removed from deployments.

28

Vitess Security Audit, 2023

ADA-VIT-SA23-7: Critical 3rd-party dependency is archived
ID ADA-VIT-SA23-7

Component VTAdmin

Severity Low

Fixed No

VTAdmin uses the github.com/gorilla/mux library for routing incoming requests to
VTAdmin-api. As of 9th December 2022, the gorilla/mux library has been archived and is
now unmaintained. This does not mean that the library is insecure to use, but it does have
implications for its security.
One implication is that gorilla/mux is unlikely to fix issues - both reliability issues and
security vulnerabilities. Furthermore, the project is unlikely to even accept and triage
security disclosures.
Another implication is that the project is unlikely to do its own ongoing security work. For
example, Ada Logics attempted to involve the project in integrating continuous fuzzing by
way of OSS-Fuzz in 2020: https://github.com/gorilla/mux/pull/575 via a pull request that
has still not beenmerged.

As such, gorilla/mux has a low security posture that can affect VTAdmin. Since the library is
designed to be exposed to untrusted input, security vulnerabilities could have a critical
impact on VTAdmin.

29

https://github.com/gorilla/mux/pull/575

Vitess Security Audit, 2023

ADA-VIT-SA23-8: VTAdmin not protected by a rate limiter
ID ADA-VIT-SA23-8

Component VTAdmin-api

Severity Moderate

Fixed No

Description
VTAdmin is not protected by a rate limiter which makes it susceptible to multiple attack
vectors.

The underlying Vitess backend is guarded by a rate limiter, and the impact of this attack
would be limited to stealing RBAC credentials or launching a DDoS attack.

PoC
We demonstrate the issue with the following PoC. The idea is that we should be able to
execute all 100,000 requests without being blocked - which demonstrates lack of a rate
limiter. The PoC checks the return value of the http response. The assumption is that if a
rate limiter would prevent an attacker from sending 100,000 requests, VTAdmin would
return an error or an empty response. The PoC therefore checks whether VTAdmin returns
a valid hostname, and if not, then it breaks the loop and checks if it sent 100,000 requests.

import requests

import json

url = 'http://localhost:14200/api/vtctlds'

j = 0

for i in range(100000):

x = requests.get(url)

resp = json.loads(x.text)

if resp["result"]["vtctlds"][0]["hostname"] != "localhost:15999":

break

j+=1

if j != 10000:

print("We hit a limit")

else:

print("We sent all 100000 requests")

30

Vitess Security Audit, 2023

This script sends all 100,000 requests to the server successfully demonstrating how easy it
is to exploit the lack of rate limiting.

31

Vitess Security Audit, 2023

ADA-VIT-SA23-9: Profiling endpoints exposed by default
ID ADA-VIT-SA23-9

Component Servenv

Severity Low

Fixed Partially

Vitess’s servenv package exposes the HTTP handlers for profiling by default. We
recommend exposing these handlers only if users choose to expose them, to prevent
accidentally revealing sensitive information in a production deployment.

https://github.com/vitessio/vitess/blob/137cf9daf41112a553f617c66a56fd8b06fad20b/go/
vt/servenv/servenv.go#L33

package servenv

import (

// register the HTTP handlers for profiling

_ "net/http/pprof"

"net/url"

"os"

"os/signal"

"runtime/debug"

"strings"

"sync"

"syscall"

"time"

Vitess is working on fixing this. It has been partially fixed in
https://github.com/vitessio/vitess/pull/12987.

32

https://github.com/vitessio/vitess/blob/137cf9daf41112a553f617c66a56fd8b06fad20b/go/vt/servenv/servenv.go#L33
https://github.com/vitessio/vitess/blob/137cf9daf41112a553f617c66a56fd8b06fad20b/go/vt/servenv/servenv.go#L33
https://github.com/vitessio/vitess/pull/12987

Vitess Security Audit, 2023

ADA-VIT-SA23-10: Unsanitized parameters in html could lead
to XSS
ID ADA-VIT-SA23-10

Component Multiple

Severity Low

Fixed in:
● https://github.com/vitessio/vitess/pull/12939
● https://github.com/vitessio/vitess/pull/12940

Vitess uses Go templating a number of places to generate HTML but does not escape the
parameters to the template. Vitess could be exposed to front-end attacks such as cross-site
scripting, if an attacker manages to pass valid javascript into the templates.

Ada Logics found the following parts of Vitess to be impacted:

https://github.com/vitessio/vitess/blob/867043971bd0aa969fe7e34ae8564330972e4d89/g
o/vt/topo/topoproto/shard.go#L54

func SourceShardAsHTML(source *topodatapb.Shard_SourceShard) template.HTML {

result := fmt.Sprintf("Uid: %v</br>\nSource: %v/%v</br>\n",

source.Uid, source.Keyspace, source.Shard)

if key.KeyRangeIsPartial(source.KeyRange) {

result += fmt.Sprintf("KeyRange: %v-%v</br>\n",

hex.EncodeToString(source.KeyRange.Start),

hex.EncodeToString(source.KeyRange.End))

}

if len(source.Tables) > 0 {

result += fmt.Sprintf("Tables: %v</br>\n",

strings.Join(source.Tables, " "))

}

return template.HTML(result)

}

https://github.com/vitessio/vitess/blob/bd78c08ced8f6a3e55279d308a5a8402fd6780bc/g
o/vt/srvtopo/status.go#L126

func (st *SrvKeyspaceCacheStatus) StatusAsHTML() template.HTML {

if st.Value == nil {

return template.HTML("No Data")

}

result := "Partitions:
"

for _, keyspacePartition := range st.Value.Partitions {

33

https://github.com/vitessio/vitess/pull/12939
https://github.com/vitessio/vitess/pull/12940
https://github.com/vitessio/vitess/blob/867043971bd0aa969fe7e34ae8564330972e4d89/go/vt/topo/topoproto/shard.go#L54
https://github.com/vitessio/vitess/blob/867043971bd0aa969fe7e34ae8564330972e4d89/go/vt/topo/topoproto/shard.go#L54
https://github.com/vitessio/vitess/blob/bd78c08ced8f6a3e55279d308a5a8402fd6780bc/go/vt/srvtopo/status.go#L126
https://github.com/vitessio/vitess/blob/bd78c08ced8f6a3e55279d308a5a8402fd6780bc/go/vt/srvtopo/status.go#L126

Vitess Security Audit, 2023

result += " " + keyspacePartition.ServedType.String() + ":"

for _, shard := range keyspacePartition.ShardReferences {

result += " " + shard.Name

}

result += "
"

}

if len(st.Value.ServedFrom) > 0 {

result += "ServedFrom:
"

for _, sf := range st.Value.ServedFrom {

result += " " + sf.TabletType.String() + ": " +

sf.Keyspace + "
"

}

}

return template.HTML(result)

}

https://github.com/vitessio/vitess/blob/a49702d9f9782c14d96030c8d2771c8decb39948/g
o/vt/discovery/tablets_cache_status.go#L57

func (tcs *TabletsCacheStatus) StatusAsHTML() template.HTML {

tLinks := make([]string, 0, 1)

if tcs.TabletsStats != nil {

sort.Sort(tcs.TabletsStats)

}

for _, ts := range tcs.TabletsStats {

color := "green"

extra := ""

if ts.LastError != nil {

color = "red"

extra = fmt.Sprintf(" (%v)", ts.LastError)

} else if !ts.Serving {

color = "red"

extra = " (Not Serving)"

} else if ts.Target.TabletType == topodatapb.TabletType_PRIMARY {

extra = fmt.Sprintf(" (PrimaryTermStartTime: %v)",

ts.PrimaryTermStartTime)

} else {

extra = fmt.Sprintf(" (RepLag: %v)",

ts.Stats.ReplicationLagSeconds)

}

name := topoproto.TabletAliasString(ts.Tablet.Alias)

tLinks = append(tLinks, fmt.Sprintf(`<a href="%s"

style="color:%v">%v%v`, ts.getTabletDebugURL(), color, name, extra))

}

return template.HTML(strings.Join(tLinks, "
"))

}

https://github.com/vitessio/vitess/blob/47611bca3951ecdf442dda5c8fc12f4eb9cff29c/go/
vt/callinfo/plugin_mysql.go#L56

func (mci *mysqlCallInfoImpl) HTML() template.HTML {

return template.HTML("MySQL User: " + mci.user + " Remote Addr: " +

34

https://github.com/vitessio/vitess/blob/a49702d9f9782c14d96030c8d2771c8decb39948/go/vt/discovery/tablets_cache_status.go#L57
https://github.com/vitessio/vitess/blob/a49702d9f9782c14d96030c8d2771c8decb39948/go/vt/discovery/tablets_cache_status.go#L57
https://github.com/vitessio/vitess/blob/47611bca3951ecdf442dda5c8fc12f4eb9cff29c/go/vt/callinfo/plugin_mysql.go#L56
https://github.com/vitessio/vitess/blob/47611bca3951ecdf442dda5c8fc12f4eb9cff29c/go/vt/callinfo/plugin_mysql.go#L56

Vitess Security Audit, 2023

mci.remoteAddr)

}

https://github.com/vitessio/vitess/blob/47611bca3951ecdf442dda5c8fc12f4eb9cff29c/go/
vt/callinfo/plugin_grpc.go#L67

func (gci *gRPCCallInfoImpl) HTML() template.HTML {

return template.HTML("Method: " + gci.method + " Remote Addr: " +

gci.remoteAddr)

}

The Vitess maintainers triaged these cases extensively to assess whether user-controlled
data could be passed to any of the templates to launch an XSS attack. Such an attack can
be highly critical, since some of the templates are meant to be viewed by a Vitess admin. At
the time of the audit, the Vitess maintainers found that the parameters passed to the
templates were only user-controlled in one of the cases. This case was triaged heavily and
the Vitess team found that an attack vector was not possible.

To guard against future issues with templating, Vitess now uses the
https://github.com/google/safehtml library for html templating. In addition, Vitess now uses
templates instead of raw string concatenation for non-user controlled input.

35

https://github.com/vitessio/vitess/blob/47611bca3951ecdf442dda5c8fc12f4eb9cff29c/go/vt/callinfo/plugin_grpc.go#L67
https://github.com/vitessio/vitess/blob/47611bca3951ecdf442dda5c8fc12f4eb9cff29c/go/vt/callinfo/plugin_grpc.go#L67
https://github.com/google/safehtml

Vitess Security Audit, 2023

ADA-VIT-SA23-11: Zip bomb in k8stopo
ID ADA-VIT-SA23-11

Component k8stopo

Severity Low

Fixed No

Description
K8stopomay be susceptible to a zip bomb attack from lack of size checking when
extracting a zip file. k8stopo reads the contents of an extracted zip archive entirely into
memory on the highlighted line below. If the archive is accidentally or intentionally crafted
in such a way that it is larger than the available memory, the zip archive could cause
k8stopo to exhaust memory thereby resulting in denial of service.

https://github.com/vitessio/vitess/blob/395840969d183dbdb080eabf95b0bcd2ddefb885/g
o/vt/topo/k8stopo/file.go#L70

func unpackValue(value []byte) ([]byte, error) {

decoder := base64.NewDecoder(base64.StdEncoding, bytes.NewBuffer(value))

zr, err := gzip.NewReader(decoder)

if err != nil {

return []byte{}, fmt.Errorf("unable to create new gzip reader: %s", err)

}

decoded := &bytes.Buffer{}

if _, err := io.Copy(decoded, zr); err != nil {

return []byte{}, fmt.Errorf("error coppying uncompressed data: %s", err)

}

if err := zr.Close(); err != nil {

return []byte{}, fmt.Errorf("unable to close gzip reader: %s", err)

}

return decoded.Bytes(), nil

}

36

https://github.com/vitessio/vitess/blob/395840969d183dbdb080eabf95b0bcd2ddefb885/go/vt/topo/k8stopo/file.go#L70
https://github.com/vitessio/vitess/blob/395840969d183dbdb080eabf95b0bcd2ddefb885/go/vt/topo/k8stopo/file.go#L70

Vitess Security Audit, 2023

ADA-VIT-SA23-12: VTAdmin users that can create shards can
deny access to other functions
ID ADA-VIT-SA23-12

Component VTAdmin

Severity Moderate

Fixed in: https://github.com/vitessio/vitess/pull/12917

Description
A user that can create shards in Vitess can also deny access to shards by creating a shard
with a well-crafted name. This will cause Vitess to create the shard, and any access to
shards will subsequently be denied from.

This is especially impactful for VTAdmin which has a granular permission control. As such,
a user with low privileges - for example only create-privileges against shards - can deny all
other users from fetching created shards.

The issue has been assigned CVE-2023-29195.

37

https://github.com/vitessio/vitess/pull/12917

Vitess Security Audit, 2023

SLSA review
In this section we present our findings from our SLSA compliance review of Vitess.

SLSA is a framework for assessing artifact integrity and ensure a secure supply chain for
downstream users.

In this part of the audit, we assessed Vitess’s SLSA compliance by following SLSA’s v0.1
requirements3. This version of the SLSA standard is currently in alpha and is likely to
change.

Our assessment shows Vitess’s current level of compliance.

Vitess manages its source code on Github which makes it version controlled and possible
to verify the commit history. The source code is retained indefinitely and all commits are
verified by two different maintainers.
The build is fully scripted and is invoked via Vitess’s Makefile. The build runs in Github
Actions which provisions the build environment for building Vitess and does not reuse it
for other purposes. Github actions are not fully isolated, in that the build can access env
var mounted secrets. The build is also not fully hermetic, since it runs with network access,
which Vitess needs to pull in dependencies at build time.
Vitess lacks the provenance statement, and this is the area where Vitess can improve the
most. Vitess can achieve level 1 SLSA compliance by:

● Making the provenance statement available with releases.
● Including the builder, artifacts and build instructions in the provenance.

The build instructions are the highest level of entry, which in Vitess’ case is the command
that invokes the Makefile.

Overview

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Source - Version controlled ✓ ✓ ✓

Source - Verified history ✓ ✓

Source - Retained indefinitely ✓

Source - Two-person reviewed ✓

3 https://slsa.dev/spec/v0.1/requirements

38

https://slsa.dev/spec/v0.1/requirements

Vitess Security Audit, 2023

Build - Scripted build ✓ ✓ ✓ ✓

Build - Build service ✓ ✓ ✓

Build - Build as code ✓ ✓

Build - Ephemeral environment ✓ ✓

Build - Isolated ⛔ ⛔

Build - Parameterless ✓

Build - Hermetic ⛔

Build - Reproducible ✓

Provenance - Available ⛔ ⛔ ⛔ ⛔

Provenance - Authenticated ⛔ ⛔ ⛔

Provenance - Service generated ⛔ ⛔ ⛔

Provenance - Non-falsifiable ⛔ ⛔

Provenance - Dependencies complete ⛔

Provenance - Identifies artifact ⛔ ⛔ ⛔ ⛔

Provenance - Identifies builder ⛔ ⛔ ⛔ ⛔

Provenance - Identifies build instructions ⛔ ⛔ ⛔ ⛔

Provenance - Identifies source code ⛔ ⛔ ⛔

Provenance - Identifies entry point ⛔ ⛔

Provenance - Includes all build
parameters

⛔ ⛔

Provenance - Includes all transitive
dependencies

⛔

Provenance - Includes reproducible info ⛔

Provenance - Includes metadata ⛔ ⛔ ⛔ ⛔

Common - Security Not defined by SLSA requirements

Common - Access ✓

Common - Superusers ✓

39

Vitess Security Audit, 2023

Conclusions
In this engagement, Ada Logics completed a security of Vitess’s VTAdmin component. The scope
was well-defined and set to be a 5-week engagement. The goals were to formalize a threat model
of VTAdmin, conduct a manual code review of VTAdmin and the remaining Vitess codebase, assess
and improve Vitess’s fuzzing suite and finally carry out a SLSA compliance review.

Our overall assessment of VTAdmin is highly positive. VTAdmin follows secure design and code
practices, and VTAdmin-web is written with React which is hardened to defend against many cases
of Cross-Site Scripting. The backend, VTAdmin-api, is written in Go which is a memory-safe
language.

The VTAdmin code is clean and well-structured, making it easy to understand and audit. This is
important for both external auditors such as Ada Logics as well as for the Vitess teamwhen triaging
bug reports.

The auditing team found two vulnerabilities during the audit, and the Vitess teamwere fast to
respond to these. The Vitess team also extensively triaged another issue reported by Ada Logics to
determine its severity. This professional response to security disclosures is an important element
of well-maintained security policy. The highest severity of any issue found was Moderate which is a
testament to the security practices that Vitess follows with VTAdmin as well as the remaining code
base.

Vitess’s fuzzing suite is extensive, targets complex parts of the code base and runs continuously on
OSS-Fuzz which are important elements of a solid fuzzing suite. Ada Logics added two fuzzers that
test the root cause for the two CVEs. The fuzzers found edge cases that could trigger both
vulnerabilities but had not been found and fixed initially, and the Vitess team subsequently fixed
these.

Vitess showed great initiative with their SLSA compliance, having started work on generating the
provenance attestation before the audit commenced.

Ada Logics would like to thank the Vitess team for a productive security audit with fruitful
collaboration on the found issues. We would also like to thank OSTIF for facilitating the audit and
the CNCF for funding the audit.

40

