The Vitess Documentation

Contents
Region-based Sharding L e e 14
Preparation L e e 14
Schema L s 14
Region Vindex e e e 14
Start the Cluster e 16
ABLASES . . . o e 17
Connect to your cluster L e e 18
Insert some data into the cluster L 18
Examine the data we just inserted 18
COoncepts . . . o o 19
Cell . o 19
Execution Plans L 19
Keyspace ID L o e 20
Keyspace 20
MoveTables L e 20
Identifying Candidate Tables o . . . 0 e e 20
Query Rewriting o L L e e 21
Replication Graph 0 e e 25
Shard e 25
Shard Naming o e 25
Resharding L 26
Tablet e 26
Tablet Types o o e e e e 26
Topology Service L e e 26
Global Topology« . . . 27
Local Topology o e 27
VSchema e 27
VStream L e 27
vietl L e s 27
Contribute L 29

Learning Go o L e 29

Learning Vitess o L e 29
Build on CentOS e 30
Install Dependencies oL e 30
Build Vitess e 30
Testing your Binaries e 31
Common Build Issueso e 31
Build on macOS L 31
Install Dependencies L e e 31
Build Vitess e 32
Testing your Binaries oL 32
Common Build Issues 0 e 32
Build on Ubuntu/Debian e e e 33
Install Dependencies L e 33
Build Vitess o e 34
Testing your Binaries L L e e e 34
Common Build Issueso L e 34
Coding Standards e 35
Backwards Compatibility oL 35
What does a good PR look like? e 35
Assigning a Pull Request L 36
Approving a Pull Request L e 37
Merging a Pull Request oL 37
GitHub Workflow o o e 37
Remotes e 37
Topic Branches o L e e e 38
Committing your work oL 38
Sending Pull Requests L e 38
Addressing Changes L e 39
FAQ . o o 39
Configuration e e e e e 39
Does the application need to know about the sharding scheme underneath Vitess? 39

I cannot start a cluster, and see these errors in the logs: Could not open required defaults file: /path/to/my.cnf . 40

QUETIES . . . o o o e e 40
Can I address a specific shard if I want to? e e 40
How do I choose between master vs. replica for queries? L o 40
There seems to be a 10 000 row limit per query. What if I want to do a full table scan? 40
Is there a list of supported/unsupported queries? L L 40

If T have a log of all queries from my app. Is there a way I can try them against Vitess to see how they’ll work? . 41

Vindexes o o e e 41
Does the Primary Vindex for a tablet have to be the same as its Primary Key? 41
Get Started L e e 41
Helm Chart (deprecated) 41
Prerequisiteso L L 41
Start a single keyspace cluster L L L 42
Setup Port-forward oL 43
Next Steps o o o e e 44
Local Install via Docker e 44
Check out the vitessio/vitess repositoryo 44
Build the docker image L e e e 44
Run the docker image L 44
SUIMMATY . . . o o oo e e e e 45
Next Steps o o e e 45
Local Install L e e e 46
Install MySQL and eted 0oL e e e 46
Disable AppArmor or SELIinux e 46
Install Vitess o e e e 46
Start a Single Keyspace Cluster e 47
Setup Aliases L e e 48
Connect to your cluster L 48
SUMMATY . . . o oot o e e e e e e e 49
Next Steps o o o e 49
Vitess Operator for Kubernetes 0 e 49
Prerequisites L e e 49
Install the Operator 0 e e 50
Bring up an initial clustero 50
Setup Port-forward L L e e e 50
Create Schema L 51
Next Steps o o o e 52
OVEIVIEW o o e e 52
Architecture L e 52
Cloud Native o 52
Vitess on Kubernetes e 53
History . . . o o e e 53
Vitess becomes a CNCF project 0 o e e 54
Scalability Philosophy o o e 54

Small INStANCES e 54

Durability through replication oL e 54
Comnsistency model 54
Multi-cell o 55
Supported Databases L 56
MySQL versions 5.6 t0 8.0o e e e e e 56
MariaDB versions 10.0 to 10.3« . . oL e e 56
See also . . . L. 56
What Is Vitess o o e 56
Features o L e 57
Comparisons to other storage options 57
Older Version Docs o o 0o e 58
Features o e 58
MesSaging 58
Creating a message table L 59
Enqueuing messages e e e e 60
Receiving messages L 60
Acknowledging messages 60
Exponential backoff oL e 60
Purgingo e 60
Advanced USAGE 61
Undocumented features L L e 61
Known limitations o e e e 61
Replication L e e 61
Semi-SYNc L 61
Database Schema Considerations o e e e e 62
Point In Time Recovery L e e 62
Point in Time Recovery e 62
Schema Management L e e 64
Reviewing your schema L. e e e 64
Changing your schema L e 65
Schema Routing Rules o o e 67
ApplyRoutingRules oL e 67
SYNEAX . . . o o e e e e e 67
Sharding o o e e 68
OVEIVIEW . . . o o e e s 68
Sharding scheme L 68
Resharding e 69

Problems with DROP TABLE 70

Vitess table lifecycle 70
Lifecycle subsets and configuration 71
Automated lifecycle 71
User-facing DROP TABLE lifecycle 71
Tablet throttler L o e e 71
Why throttler: maintaining low replication lag L e 71
Throttler overview oL e e 72
Configuration e e e 73

APT & usage . . . o o o e e e 73
Resources e 74
Topology Service L e 74
Requirements and usage L e e 75

Global data o 75

Local data 0 o e e 76
Workflows involving the Topology Service e 7
Exploring the data in a Topology Service e 77
Implementations L e 78
Running in only one cell oL e e 80
Migration between implementations Lo e 81
Transport Security Model L e e e 82
OVEIVIEW e e 82

Caller ID . . . e 83

gRPC Transport o e e e e e 83

MySQL Transport to VI'Gate e e 85
Two-Phase Commit e 86
Isolation o L e e 86

Driver APIs 86
Configuring VITablet 0 e 87
Configuring MySQL o 87
Monitoring L e 87

Critical failures o 87
Alertable failures e 87

Repairs o e 88
VINAeXes o e e 88

A Vindex maps column values to keyspace IDs L 88

Advantages e 88

SEqUENCES . .« o v v i e e e e e e e 92
Motivation oL e e e 92
When not to Use Auto-Increment o e 93
MySQL Auto-increment Feature e 93
Vitess SEqUENCES o o i e e e 94

VReplication e 95
Feature description oL e 95
VReplicationExec L 96
Other properties of VReplication e 99
Monitoring and troubleshooting oL e 100

VSchema L e 100
VSchemas describe how to shard data L e 100
Sharded keyspaces require a VSchema L 101
Sharding Model 101
Vindexes oL 101
SEqUENCES o o e e 101
Reference tables e e e 101
Configuration e e 101

MySQL Compatibility o o e e 104
Transaction Model oL e 105
SQL Syntax o e s 105
Network Protocol o o e 106
Temporary Tables o o e e e 106
Character Set and Collation o e 106
SQL Mode o o 106
Data Types o o o e e e 106
Auto Increment L. e e 106
Extensions to MySQL Syntax e 106

Programs L e e s 107

mysqletl . . Lo 107
Commands 107
Options 108

vtctl Cell Aliases Command Reference 000 113
Commands e 113
See AISO . . . o e 114

vtetl Cell Command Reference L e 114
Commands e 114

See AISO 116

vtctl Generic Command Reference oL Lo 116
Commands e 116
See ALSO . . . e 117
vtetl Keyspace Command Referenceo . 0 00 L 118
Commands e 118
See ALSO . . . o e 127
vtetl Query Command Reference oL L e 127
Commands e 127
See ALSO L 130
vtetl Replication Graph Command Reference oL L 130
Commands e 130
See ALSO L e 131
vtetl Resharding Throttler Command Reference 0 0 o0 o 131
Commands e 131
See AlSO . . . 133
vtetl Schema, Version, Permissions Command Reference 133
Commands e e 133
See ALSO . . . L e 141
vtctl Serving Graph Command Reference oL L 142
Commands 142
See ALSO . . . o e 143
vtetl Shard Command Reference 143
Commands e 143
See AISO . . . 151
vtetl Tablet Command Referenceo o L o 152
Commands e 152
See ALSO L 161
vtetl Topo Command Reference o L o 0 00 0 L 161
Commands 161
See ALSO o e 161
vtctl Workflow Command Reference o L 162
Commands 162
See ALSO o e 163
271 163
Commands e e 163
Options o 168
victld .. 176

Example Usage 0 176

Options 176
vtexplain oL e e 185
Example Usage 0 e s 185
OptionS o e 185
Limitations L o e 185
OPLIONS o e 186
vttablet . . . oL L e 190
Example Usage o 0 e e 191
OPLIONS o e 192
VReplication e 201
DropSources. e 201
Life of a stream L e 201
Materialize L e e 204
MoveTables e 205
Reshard o e 207
SwitchReads« . . . o e 208
SwitchWrites o 209
VDIl . o e 209
VEXEC . . o o e e 211
OVErvVIEW . . . o o e e e 211
Feature description L e e e 212
VReplicationExec oL o e e 213
Other properties of VReplication e 216
Monitoring and troubleshooting L e 217
VReplicationExec« . o L e e 217
Workflow e 218
Resources o e e 219
Presentations and Videos L e e 219
CNCF Webinar 2020 0 i e 219
MySQL Pre-FOSDEM Day 2020 oo e e e e e e 219
KubeCon San Diego 2019 o e e 219
Highload 2019 219
Utah Kubernetes Meetup 2019 o . L e e 220
CNCF Meetup Paris 2019 o e 220
Percona Live Europe 2019 oL e e 220
Vitess Meetup 2019 @ Slack HQ e 220
Cloud Native Show 2019 0 o e e 220

CNCF Webinar 2019 221

Kubecon China 2019 e 221
RootConf 2019 221
Kubecon 19 Barcelona o e 221
Percona Live Austin 2019 L e 221
Velocity New York 2018 o L e 222
Percona Live Europe 2017 o e 222
Vitess Deep Dive sessions o . oo e e 222
Percona Live 2016 L L e e 222
CoreOS Meetup, January 2016 L L e 223
Oracle OpenWorld 2015 L e e 223
Percona Live 2015 oL e e 223
Google I/0 2014 - Scaling with Go: YouTube’s Vitess o ittt e 223
Vitess Roadmap L e 223
Short Term L e 223
Medium Term oL e e e e 224
Troubleshoot L e 224
Elevated query latency on master e e e e e e e e 224
Master starts up read-only oL L e e e 225
Vitess sees the wrong tablet as master L 225
User Guides o e 225
Advanced Configuration L 225
description: User guides covering advanced configuration concepts Lo L 225
Authorization L e 226
VTTablet parameters for table ACLs e 226
Format of the table ACL config file e 226
Example Lo e e 227
CreateLookupVindex e 228
Integration with Orchestrator L e 238
Orchestrator configuration L L 238
VTTablet configuration 0 e e e e 238
LDAP authentication e 239
Requirements oL e 239
Configuration L e e e 239
Region-based Sharding« L e e e 241
Preparation L L e 241
Schema e 241
Region Vindex L e 241

Start the Cluster 242

ALIASES . . . o 243
Connect to your cluster L e 244
Insert some data into the cluster L 244
Examine the data we just inserted L 244
Prepare for reshardingo e 245
Perform Resharding o . o e 249
Cutover s 250
Drop sourceo e 251
Teardown e e e 251
Reparenting L e e 251
MySQL requirements L e 251
External Reparenting oL e e 253
Fixing Replication L 0 e e 253
Resharding o . o e e 253
Preparation L L 254
Apply VSchema e 256
Create new shards L 256
Start the Reshard 0 e 257
Validate Correctness o L e 257
Switch Reads e 257
Switch Writes e e 257
Cleanup oo e 258
Tracing o e e e e s 259
Vitess tracing 259
Configuring tracing e e e 259
Unmanaged Tablet L o e e 261
Ensure all components are up Lo e e 261
Start a tablet to correspond to legacy L 262
Connect via VTGate e 262
Move legacytable to the commerce keyspace L e 263
User Management and Authentication e 264
Authentication L e 264
Password format e 265
UserData o o e 265
Multiple passwords e e 265
Other authentication methods o 266
Configuration e e e 266

description: User guides covering basic configuration concepts L L Lo 266

Configuring Components o e e e e e e 266
Managed MySQL o . e e 266
Vitess SEIVErs o o e e e e e 267
VTTablet o o e e s 268
VTGate o e 274

Exporting data from Vitess L e e e 275

Production Planning oL e e 276
Provisioning L e e e 276
Production testing L e e 277

Legacy o e 277

description: User guides for features in older version of Vitess L 277

Horizontal Sharding« . . . 0 e e 277
Preparation Lo 277
Create new shards L 280
SplitClone o e e e 281
Cut OVET e 281
Clean uUp . . - . . o o e s 282
Next Steps . . . o o o e e 282

Vertical Split e 282
Create Keyspace 0 283
Customer Tablets L e 283
VerticalSplitClone o L e 284
Cut OVEr e 284
Clean uUp o o 285
Next Steps . . . o o o e e e 285

Migration e e 285

description: User guides covering migration to Vitess e 285

Materialize L e e e 285
Planning to use Materialize L e e 287
Create the destination tables e 287
Start the Materialize (first copy) o e 287
Viewing the workflow while in progress L 288
Start the Materialize (redacted copy) o« o o i i e 290
What happened under the covers e e e e 290
Cleanup o e 291
Recap o e s 292

Migrating data into Vitess L L e 293

11

Introduction 293

OVEIVIEW . . o o o e e 293
Method 1: “Stop-the-world”: e 293
Method 2: VReplication from Vitess setup in front of the existing external MySQL database 293
Method 3: Application-level migration oL 294
MoveTables o e e 295
Planning to Move Tables 0 e 296
Show our current tablets L 296
Create new tablets e 296
Show our old and new tablets L e 297
Start the Move L e 298
Check routing rules (optional) 298
Monitoring Progress (optional) L 299
Validate Correctness (optional) 299
Phase 1: Switch Reads e 299
Interlude: check the routing rules (optional) L 300
Phase 2: Switch Writes o e e e 302
Interlude: check the routing rules (optional) L 302
Reverse workflow e 302
Drop Sourceso e e e 303
Next Steps o o o e 303
Operational 0L e e e e 303
CONCEPES « . v v e e 303
VTTablet Configuration 0 o e e e e e e 304
Creating a backup o L 307
Restoring a backup L e s 307
Managing backups L L e e e 307
Bootstrapping a new tablet L L e 308
Backing up Topology Server e 308
Making Schema Changes e e 308
ApplySchema e 308
VTGate o e e e 308
Directly to MySQL o e 308
Upgrading Vitess 0 o e e e 309
Compatibility o o e 309
Upgrade Order e e e e 309
Canary Testing o e 309
Rolling Upgrades e e 309

12

Upgrading the Master Tablet 0 e 309

Making Schema Changes« . . e e e 310
The schema change problem e e 310
ALTER TABLE solutions 0 e e e e e 310
Schema change cycle and operation L e 310
Schema change and Vitess L e 311
The various approaches L e 312

Managed, Online Schema Changes e e e 312
SYNtax o e e 312
ApplySchema e 312
VTGate o o e e e 313
Migration flow and stateso e e 314
Tracking migrations L e e e 314
Cancelling a migration L e 316
Retrying a migration L 318
gh-ost and pt-online-schema-change L e 319
Using gh-ost o L e e s 319
Using pt-online-schema-change e 320
Throttling o e e 320
Table cleanup L e 320
VExec commands for greater control and visibility L oL 320

Unmanaged Schema Changes o ittt e e 323
ApplySchema L e e 323
VTGate o oo e e 324
Directly to MySQL o o e 324

SQL Statement Analysis e 324

description: User guides covering analyzing SQL statements oL 324

Analyzing SQL statements in bulk L e 324

Introduction 324
Prerequisiteso L 325
OVEIVIEW . . o o o e e e 325
1. Gather the queries from your current MySQL database environment 325
2. Filter out specific queries L e e 325
3. Populate fake values for your queries L 326
4. Run the VTexplain tool via a script e 326
5. Add your SQL schema to the output file 327
6. Add your VSchema 327
7. Run the VTexplain tool and capture the output o 327

8. Check your output oL e 328

vtexplain -shards 8 -vschema-file vschema.json -schema-file schema.sql -replication-mode “ROW?” -output-mode text
-sql “SELECT * from USers” o o v v it e e e e e e 330

See alS0 . . L 331

Region-based Sharding

{{< info >}} This guide follows on from the Get Started guides. Please make sure that you have a local installation ready. You
should also have already gone through the MoveTables and Resharding tutorials. {{< /info >}}

Preparation

Having gone through the Resharding tutorial, you should be familiar with VSchema and Vindexes. In this tutorial, we will
create a sharded keyspace using a location-based vindex. We will create 4 shards (-40, 40-80, 80-c0, c0-). The location will be
denoted by a country column.

Schema

We will create 2 tables in this example.

CREATE TABLE customer (
id int NOT NULL,
fullname varbinary (256),
nationalid varbinary(256),
country varbinary(256),
primary key(id)
);

CREATE TABLE customer_lookup (
id int NOT NULL,
keyspace_id varbinary (256),
primary key(id)

);

The customer table is the main table we want to shard using country. The lookup table will help us do that.

Region Vindex

We will use a region_json vindex to compute the keyspace_id for a customer row using the (id, country) fields. Here’s what
the vindex definition looks like:

"region_vdx": {
"type": "region_json",
"params": {
"region_map": "/vt/examples/region_sharding/countries.json",
"region_bytes": "1"
}
I
And we use it thus:
"customer": {
"column_vindexes": [
{
"columns": ["id", "country"],
"name": "region_vdx"
P

14

This vindex uses a byte mapping of countries provided in a JSON file and combines that with the id column in the customer
table to compute the keyspace_id. In this example, we are using 1 byte. You can use 1 or 2 bytes. With 2 bytes, 65536 distinct
locations can be supported. The byte value of the country(or other location identifier) is prefixed to a hash value computed from
the id to produce the keyspace_ id.

The lookup table is used to store the id to keyspace_id mapping. We connect it to the customer table as follows: We first define
a lookup vindex:

"customer_region_lookup": {

"type": "consistent_lookup_unique",

"params": {
"table": "customer_lookup",
llfromll: llidll,
"to": "keyspace_id"

¥

"owner": "customer"

X,

Then we create it as a vindex on the customer table:

"customer": {
"column_vindexes": [
{
"columns": ["id", "country"],
"name": "region_vdx"
Y
{
"column": "id",
"name": "customer_region_lookup"
}
]
}

The lookup table could be unsharded or sharded. In this example, we have chosen to shard the lookup table also. If the goal of
region-based sharding is data locality, it makes sense to co-locate the lookup data with the main customer data. We first define
an identity vindex:

"identity": {

"type": "binary"

}

Then we create it as a vindex on the lookup table:

"customer_lookup": {
"column_vindexes": [

{
"column": "keyspace_id",
"name": "identity"

]
s

This is what the JSON file contains:

{
"United States": 1,
"Canada": 2,
"France": 64,

"Germany": 65,
"China": 128,

15

"Japan": 129,
"India": 192,
"Indonesia": 193

3

The values for the countries have been chosen such that 2 countries fall into each shard.

Start the Cluster

Start by copying the region_ sharding example included with Vitess to your preferred location.

cp -r /usr/local/vitess/examples/region_sharding ~/my-vitess/examples/region_sharding
cd ~/my-vitess/examples/region_sharding

The VSchema for this tutorial uses a config file. You will need to edit the value of the region_map parameter in the vschema
file main_vschema. json. For example:

"region_map": "/home/user/my-vitess/examples/region_sharding/countries.json",

Now start the cluster

./101 _initial_cluster.sh

You should see output similar to the following:

~/my-vitess-example> ./101_initial_cluster.sh
add /vitess/global

add /vitess/zonel

add zonel CellInfo

etcd start done...

Starting vtctld...

Starting MySQL for tablet zonel-0000000100...
Starting vttablet for zonel-0000000100...
HTTP/1.1 200 OK

Date: Thu, 21 May 2020 01:05:26 GMT
Content-Type: text/html; charset=utf-8

Starting MySQL for tablet zonel-0000000200...
Starting vttablet for zonel-0000000200...
HTTP/1.1 200 OK

Date: Thu, 21 May 2020 01:05:31 GMT
Content-Type: text/html; charset=utf-8

Starting MySQL for tablet zonel-0000000300...
Starting vttablet for zonel-0000000300...
HTTP/1.1 200 OK

Date: Thu, 21 May 2020 01:05:35 GMT
Content-Type: text/html; charset=utf-8

Starting MySQL for tablet zonel-0000000400...
Starting vttablet for zonel-0000000400...
HTTP/1.1 200 OK

Date: Thu, 21 May 2020 01:05:40 GMT
Content-Type: text/html; charset=utf-8

W0520 18:05:40.443933 6824 main.go:64] W0521 01:05:40.443180 reparent.go:185]

master-elect tablet zonel-0000000100 is not the shard master, proceeding anyway as
-force was used

16

W0520 18:05:40.445230 6824 main.go:64] W0521 01:05:40.443744 reparent.go:191]
master-elect tablet zonel-0000000100 is not a master in the shard, proceeding anyway as
-force was used

W0520 18:05:40.496253 6841 main.go:64] W0521 01:05:40.495599 reparent.go:185]
master-elect tablet zonel-0000000200 is not the shard master, proceeding anyway as
-force was used

W0520 18:05:40.496508 6841 main.go:64] W0521 01:05:40.495647 reparent.go:191]
master-elect tablet zonel-0000000200 is not a master in the shard, proceeding anyway as
-force was used

W0520 18:05:40.537548 6858 main.go:64] W0521 01:05:40.536985 reparent.go:185]
master-elect tablet zonel-0000000300 is not the shard master, proceeding anyway as
-force was used

W0520 18:05:40.537758 6858 main.go:64] W0521 01:05:40.537041 reparent.go:191]
master-elect tablet zonel-0000000300 is not a master in the shard, proceeding anyway as
-force was used

w0520 18:05:40.577854 6875 main.go:64] W0521 01:05:40.577407 reparent.go:185]
master-elect tablet zonel-0000000400 is not the shard master, proceeding anyway as
-force was used

W0520 18:05:40.578042 6875 main.go:64] W0521 01:05:40.577448 reparent.go:191]
master-elect tablet zonel-0000000400 is not a master in the shard, proceeding anyway as
-force was used

Waiting for vtgate to be up...
vtgate is up!
Access vtgate at http://localhost:15001/debug/status

You can also verify that the processes have started with pgrep:

~/my-vitess-example> pgrep -fl vtdataroot
3920 etcd

4030 vtctld

4173 mysqld_safe
4779 mysqld

4817 vttablet
4901 mysqld_safe
5426 mysqld

5461 vttablet
5542 mysqld_safe
6100 mysqld

6136 vttablet
6231 mysqld_safe
6756 mysqld

6792 vttablet
6929 vtgate

The exact list of processes will vary. For example, you may not see mysqld_safe listed.
If you encounter any errors, such as ports already in use, you can kill the processes and start over:

pkill -9 -e -f '(vtdataroot|VTDATAROOT)' # kill Vitess processes
rm -rf vtdataroot

Aliases

For ease-of-use, Vitess provides aliases for mysql and vtctlclient. These are automatically created when you start the cluster.

source ./env.sh

17

Setting up aliases changes mysql to always connect to Vitess for your current session. To revert this, type unalias mysql &&
unalias vtctlclient or close your session.

Connect to your cluster

You should now be able to connect to the VT'Gate server that was started in 101_initial_cluster.sh:

~/my-vitess-example> mysql

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2

Server version: 5.7.9-Vitess (Ubuntu)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners .

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show tables;

o +
| Tables_in_vt_main |
Fmm - +
| customer |
| customer_lookup |
o +

2 rows in set (0.01 sec)

Insert some data into the cluster

~/my-vitess-example> mysql < insert_customers.sql

Examine the data we just inserted

mysql> use main/-40;
Database changed

mysql> select * from customer;

e ittt e ettt e +
| id | fullname | nationalid | country

e e Fommm - Fommm e +
1	Philip Roth	123-456-789	United States
2	Gary Shteyngart	234-567-891	United States
3	Margaret Atwood	345-678-912	Canada
4	Alice Munro	456-789-123	Canada I
et e e Fommm - Fomm - +
4 rows in set (0.01 sec)

mysql> select id,hex(keyspace_id) from customer_lookup;
| id | hex(keyspace_id) |

P e e P e e e e e O I e 3
| 1 | 01166B40B44ABA4BD6 |

18

2	O0106E7EA22CE92708F
3	024EB190C9A2FA169C
4	02D2FD8867D50D2DFE

4 rows in set (0.00 sec)

You can see that only data from US and Canada exists in this shard. Repeat this for the other shards (40-80, 80-cO and c0-)
and see that each shard contains 4 rows in customer table and the 4 corresponding rows in the lookup table.

You can now teardown your example:

./201_teardown.sh
rm -rf vtdataroot

Concepts

description: Learn core Vitess concepts and terminology

Cell

description: Data center, availability zone or group of computing resources

A cell is a group of servers and network infrastructure collocated in an area, and isolated from failures in other cells. It is
typically either a full data center or a subset of a data center, sometimes called a zone or availability zone. Vitess gracefully
handles cell-level failures, such as when a cell is cut off the network.

Each cell in a Vitess implementation has a local topology service, which is hosted in that cell. The topology service contains
most of the information about the Vitess tablets in its cell. This enables a cell to be taken down and rebuilt as a unit.

Vitess limits cross-cell traffic for both data and metadata. While it may be useful to also have the ability to route read traffic
to individual cells, Vitess currently serves reads only from the local cell. Writes will go cross-cell when necessary, to wherever
the master for that shard resides.

Execution Plans

Vitess parses queries at both the VI'Gate and VT Tablet layer in order to evaluate the best method to execute a query. This
evaluation is known as query planning, and results in a query execution plan.

The Execution Plan is dependent on both the query and the associated VSchema. One of the underlying goals of Vitess’ planning
strategy is to push down as much work as possible to the underlying MySQL instances. When this is not possible, Vitess will
use a plan that collects input from multiple sources and merges the results to produce the correct query result.

Evaluation Model An execution plan consists of operators, each of which implements a specific piece of work. The operators
combine into a tree-like structure, which represents the overall execution plan. The plan represents each operator as a node
in the tree. Each operator takes as input zero or more rows, and produces as output zero or more rows. This means that the
output from one operator becomes the input for the next operator. Operators that join two branches in the tree combine input
from two incoming streams and produce a single output.

Evaluation of the execution plan begins at the leaf nodes of the tree. Leaf nodes pull in data from VTTablet, the Topology
Service, and in some cases are also able to evaluate expression values locally. Each leaf node will not have input from other
operators, and pipe in any nodes they produce into their parent nodes. The parents nodes will then pipe in nodes to their parent
nodes, all the way up to a root node. The root node produces the final results of the query and delivers the results to the user.

19

Observing Execution Plans Cached execution plans can be observed at the VT Gate level by browsing the /queryz end
point.

Starting with Vitess 6, individual statement plans can also be observed with EXPLAIN FORMAT=vitess <query>.

Related Vitess Documentation

o VTGate

Keyspace ID
The keyspace ID is the value that is used to decide on which shard a given row lives. Range-based Sharding refers to creating
shards that each cover a particular range of keyspace IDs.

Using this technique means you can split a given shard by replacing it with two or more new shards that combine to cover the
original range of keyspace IDs, without having to move any records in other shards.

The keyspace ID itself is computed using a function of some column in your data, such as the user ID. Vitess allows you to
choose from a variety of functions (vindexes) to perform this mapping. This allows you to choose the right one to achieve optimal
distribution of the data across shards.

Keyspace

A keyspace is a logical database. If you're using sharding, a keyspace maps to multiple MySQL databases; if you're not using
sharding, a keyspace maps directly to a MySQL database name. In either case, a keyspace appears as a single database from
the standpoint of the application.

Reading data from a keyspace is just like reading from a MySQL database. However, depending on the consistency requirements
of the read operation, Vitess might fetch the data from a master database or from a replica. By routing each query to the
appropriate database, Vitess allows your code to be structured as if it were reading from a single MySQL database.

MoveTables

MoveTables is a new workflow based on VReplication. It enables you to relocate tables between keyspaces, and therefore physical
MySQL instances, without downtime.

Identifying Candidate Tables

It is recommended to keep tables that need to join on each other in the same keyspace, so typical candidates for a MoveTables
operation are a set of tables which logically group together or are otherwise isolated.

If you have multiple groups of tables as candidates, which makes the most sense to move may depend on the specifics of your
environment. For example, a larger table will take more time to move, but in doing so you might be able to utilitize additional
or newer hardware which has more headroom before you need to perform additional operations such as sharding.

Similarly, tables that are updated at a more frequent rate could increase the move time.

Impact to Production Traffic Internally, a MoveTables operation is comprised of both a table copy and a subscription to
all changes made to the table. Vitess uses batching to improve the performance of both table copying and applying subscription
changes, but you should expect that tables with lighter modification rates to move faster.

During the active move process, data is copied from replicas instead of the master server. This helps ensure minimal production
traffic impact.

During the SwitchWrites phase of the MoveTables operation, Vitess may be briefly unavailable. This unavailability is usually
a few seconds, but will be higher in the event that your system has a high replication delay from master to replica(s).

Related Vitess Documentation

e MoveTables User Guide

20

http://en.wikipedia.org/wiki/Shard_(database_architecture)

Query Rewriting

Vitess works hard to create an illusion of the user having a single connection to a single database. In reality, a single query
might interact with multiple databases and may use multiple connections to the same database. Here we’ll go over what Vitess
does and how it might impact you.

Query splitting A complicated query with a cross shard join might need to first fetch information from a tablet keeping
vindex lookup tables. Then use this information to query two different shards for more data and subsequently join the incoming
results into a single result that the user receives. The queries that MySQL gets are often just pieces of the original query, and
the final result will get assembled at the vtgate level.

Connection Pooling When a tablet talks with a MySQL to execute a query on behalf of a user, it does not use a dedicated
connection per user, and instead will share the underlying connection between users. This means that it’s not safe to store any
state in the session as you can’t be sure it will continue executing queries on the same connection, and you can’t be sure if this
connection will be used by other users later on.

User-Defined Variables User defined variables are kept in the session state when working with MySQL. You can assign
values to them using SET:

SET Omy_user_variable = 'foobar'

And later there can be queries using for example SELECT:
> SELECT @my_user_variable;

If you execute these queries against a VI'Gate, the first SET query is not sent to MySQL. Instead, it is evaluated in the VT Gate,
and VTGate will keep this state for you. The second query is also not sent down. Trivial queries such as this one are actually
fully executed on VT Gate.

If we try a more complicated query that requires data from MySQL, VT Gate will rewrite the query before sending it down. If
we were to write something like:

WHERE col = Omy_user_variable

What MySQL will see is:
WHERE col = 'foobar'

This way, no session state is needed to evaluate the query in MySQL.

Server System Variables A user might also want to change one of the many different system variables that MySQL exposes.
Vitess handles system variables in one of four different ways:

e No op. For some settings, Vitess will just silently ignore the setting. This is for system variables that don’t make much
sense in a sharded setting, and don’t change the behaviour of MySQL in an interesting way.

o Check and fail if not already set. These are settings that should not change, but Vitess will allow SET statements that try
to set the variable to whatever it already is.

e Not supported. For these settings, attempting to change them will always result in an error.

o Vitess aware. These are settings that change Vitess’ behaviour, and are not sent down to MySQL

21

e Reserved connection. For some settings, it makes sense to allow them to be set, but it also means that we can’t use a
shared connection for this user. What this means is that every connection done on this users behalf will need to first have
these system variables set, and then keep the connection dedicated. Connection pooling is important for the performance
of Vitess, and reserved connections can’t be pooled, so this should not be the normal way to run applications on Vitess.
Just make sure that the global variable is set to the same value the application will set it to, and Vitess can use connection
pooling.

Special functions There are a few special functions that Vitess handles without delegating to MySQL.

e DATABASE(Q) - The keyspace name and the underlying database names do not have to be equal. Vitess will rewrite these
calls to use the literal string for the keyspace name. (This also applies to the synonym SCHEMA())

e ROW_COUNT() and FOUND_ROWS() - These functions returns how many rows the last query affected/returned. Since this
might have been executed on a different connection, these get rewritten to use the literal value of the number of returned
TOWS.

e LAST_INSERT_ID() - Much like FOUND_ROWS(), we can’t trust a pooled connection for these function calls, so they get
rewritten before hitting MySQL.

Reference Here is a list of all the system variables that are handled by Vitess and how they are handled.

System variable Handled
autocommit VitessAware
client found rows VitessAware
skip__query_ plan__cache VitessAware
tx_read_ only VitessAware
transaction_ read_ only VitessAware
sql__select_ limit VitessAware
transaction__mode VitessAware
workload VitessAware
charset VitessAware
names VitessAware
big_ tables NoOp

bulk insert buffer size NoOp
debug NoOp
default_ storage engine NoOp
default_ tmp_ storage_ engine NoOp
innodb_ strict _mode NoOp
innodb_ support_ xa NoOp
innodb_ table locks NoOp
innodb_ tmpdir NoOp

join__ buffer_ size NoOp

keep_ files__on_ create NoOp

lc__ messages NoOp

long query_ time NoOp
low__priority__updates NoOp

max_ delayed_ threads NoOp
max__insert_ delayed_ threads NoOp
multi_range count NoOp

net_ buffer length NoOp

new NoOp
query__cache_ type NoOp
query_ cache_wlock_ invalidate NoOp
query__prealloc_ size NoOp
sql__buffer result NoOp
transaction alloc_block size NoOp

wait_ timeout NoOp

22

System variable Handled

audit_ log read_ buffer size NotSupported
auto_increment_ increment NotSupported
auto_increment_ offset NotSupported
binlog direct_non_ transactional updates NotSupported
binlog_row_image NotSupported
binlog rows_ query_ log_events NotSupported
innodb_ ft_enable_stopword NotSupported
innodb_ ft_user_stopword__table NotSupported
max_ points_ in_ geometry NotSupported
max_ sp_ recursion__depth NotSupported
myisam_ repair_ threads NotSupported
myisam__sort_ buffer size NotSupported
myisam__stats_ method NotSupported
ndb_ allow_ copying_alter_ table NotSupported
ndb_autoincrement_ prefetch sz NotSupported
ndb_ blob_read_ batch_ bytes NotSupported
ndb_ blob_ write_ batch_ bytes NotSupported
ndb_deferred_ constraints NotSupported
ndb_ force send NotSupported
ndb_ fully_ replicated NotSupported
ndb_index_stat_enable NotSupported
ndb_ index_ stat_ option NotSupported
ndb__join_ pushdown NotSupported
ndb_log bin NotSupported
ndb_log_exclusive_reads NotSupported
ndb_row_ checksum NotSupported
ndb_use_exact_ count NotSupported
ndb use transactions NotSupported
ndbinfo__max_ bytes NotSupported
ndbinfo _max_rows NotSupported
ndbinfo_show_hidden NotSupported
ndbinfo_ table prefix NotSupported
old_ alter_ table NotSupported
preload_ buffer_ size NotSupported
rbr__exec_mode NotSupported
sql_log off NotSupported
thread__pool_high priority connection NotSupported
thread_ pool prio_ kickup_ timer NotSupported
transaction write set extraction NotSupported
default_ week format ReservedConn
end__markers_in_ json ReservedConn
eq_range_index_dive_ limit ReservedConn
explicit_ defaults_ for_ timestamp ReservedConn
foreign_key checks ReservedConn
group__concat_ max_ len ReservedConn
max__heap_table_ size ReservedConn
max_ seeks_ for_ key ReservedConn
max_ tmp_ tables ReservedConn
min__examined_row_ limit ReservedConn
old__passwords ReservedConn
optimizer prune_ level ReservedConn
optimizer search_depth ReservedConn
optimizer_switch ReservedConn
optimizer trace ReservedConn
optimizer trace_ features ReservedConn

23

System variable Handled
optimizer_ trace_ limit ReservedConn
optimizer_trace_max_mem_ size ReservedConn
transaction_ isolation ReservedConn
tx_ isolation ReservedConn
optimizer_trace_ offset ReservedConn
parser__max_ mem__ size ReservedConn
profiling ReservedConn
profiling_ history_ size ReservedConn
query_ alloc_ block__size ReservedConn
range_ alloc_ block_ size ReservedConn
range_ optimizer__max_ mem_ size ReservedConn
read_ buffer size ReservedConn
read_rnd_buffer size ReservedConn
show__create__table_ verbosity ReservedConn
show_ old__temporals ReservedConn
sort_ buffer_size ReservedConn
sql_big_ selects ReservedConn
sql__mode ReservedConn
sql__notes ReservedConn
sql__quote show_ create ReservedConn
sql_safe updates ReservedConn
sql_warnings ReservedConn
tmp__table_ size ReservedConn
transaction_ prealloc_ size ReservedConn
unique__checks ReservedConn
updatable_views_ with_ limit ReservedConn
binlog_format CheckAndlIgnore
block__encryption__mode CheckAndIgnore
character set_client CheckAndIgnore
character set_connection CheckAndIgnore
character set_database CheckAndIgnore
character set_ filesystem CheckAndIgnore
character_set_ results CheckAndIgnore
character set server CheckAndIgnore
collation_ connection CheckAndIgnore
collation_database CheckAndIgnore
collation_ server CheckAndlIgnore
completion_ type CheckAndIgnore
div__precision__increment CheckAndIgnore
innodb lock wait timeout CheckAndIgnore
interactive_ timeout CheckAndIgnore
lc_ time names CheckAndlIgnore
lock_wait_ timeout CheckAndIgnore
max_ allowed_ packet CheckAndIgnore
max__error__count CheckAndIgnore
max__execution time CheckAndIgnore
max__join__size CheckAndlIgnore
max_ length for sort_ data CheckAndIgnore
max_ sort_ length CheckAndlIgnore
max_ user connections CheckAndIgnore
net_read_timeout CheckAndIgnore
net_ retry__count CheckAndIgnore
net_ write_timeout CheckAndlIgnore
session_ track_ gtids CheckAndlIgnore

session__track schema”, boolean:

CheckAndlIgnore

System variable Handled

session__track_ state_ change”, boolean: CheckAndlIgnore
session__track system_ variables CheckAndIgnore
session_ track transaction_ info CheckAndIgnore
sql_auto_is null”, boolean: CheckAndIgnore
time_ zone CheckAndlIgnore
version__tokens session CheckAndIgnore

Related Vitess Documentation

¢ VTGate

Replication Graph

The replication graph identifies the relationships between master databases and their respective replicas. During a master failover,
the replication graph enables Vitess to point all existing replicas to a newly designated master database so that replication can
continue.

Shard

A shard is a division within a keyspace. A shard typically contains one MySQL master and many MySQL replicas.

Each MySQL instance within a shard has the same data (excepting some replication lag). The replicas can serve read-only
traffic (with eventual consistency guarantees), execute long-running data analysis tools, or perform administrative tasks (backup,
restore, diff; etc.).

An unsharded keyspace has effectively one shard. Vitess names the shard 0 by convention. When sharded, a keyspace has N
shards with non-overlapping data.

Shard Naming

Shard names have the following characteristics:

e They represent a range, where the left number is included, but the right is not.
o Their notation is hexadecimal.

e They are left justified.

e A - prefix means: anything less than the right value.

e A - postfix means: anything greater than or equal to the LHS value.

e A plain - denotes the full keyrange.

Thus: -80 == 00-80 == 0000-8000 == 000000-800000

80- is not the same as 80-FF. This is why:

80-FF == 8000-FF00. Therefore FFFF will be out of the 80-FF range.
80- means: ‘anything greater than or equal to 0x80

A hash vindex produces an 8-byte number. This means that all numbers less than 0x8000000000000000 will fall in shard -80.
Any number with the highest bit set will be >= 0x8000000000000000, and will therefore belong to shard 80-.

This left-justified approach allows you to have keyspace ids of arbitrary length. However, the most significant bits are the ones
on the left.

For example an md5 hash produces 16 bytes. That can also be used as a keyspace id.

A varbinary of arbitrary length can also be mapped as is to a keyspace id. This is what the binary vindex does.

25

Resharding
Vitess supports resharding, in which the number of shards is changed on a live cluster. This can be either splitting one or more
shards into smaller pieces, or merging neighboring shards into bigger pieces.

During resharding, the data in the source shards is copied into the destination shards, allowed to catch up on replication, and
then compared against the original to ensure data integrity. Then the live serving infrastructure is shifted to the destination
shards, and the source shards are deleted.

Related Vitess Documentation

¢ Resharding User Guide

Tablet

A tablet is a combination of a mysqld process and a corresponding vttablet process, usually running on the same machine.
Each tablet is assigned a tablet type, which specifies what role it currently performs.

Queries are routed to a tablet via a VT Gate server.

Tablet Types

See the user guide VT Tablet Modes for more information.

e master - A replica tablet that happens to currently be the MySQL master for its shard.

e replica - A MySQL replica that is eligible to be promoted to master. Conventionally, these are reserved for serving live,
user-facing requests (like from the website’s frontend).

e rdonly - A MySQL replica that cannot be promoted to master. Conventionally, these are used for background processing
jobs, such as taking backups, dumping data to other systems, heavy analytical queries, MapReduce, and resharding.

e backup - A tablet that has stopped replication at a consistent snapshot, so it can upload a new backup for its shard.
After it finishes, it will resume replication and return to its previous type.

e restore - A tablet that has started up with no data, and is in the process of restoring itself from the latest backup. After
it finishes, it will begin replicating at the GTID position of the backup, and become either replica or rdonly.

o drained - A tablet that has been reserved by a Vitess background process (such as rdonly tablets for resharding).

Topology Service

description: Also known as the TOPO or lock service

The Topology Service is a set of backend processes running on different servers. Those servers store topology data and provide
a distributed locking service.

Vitess uses a plug-in system to support various backends for storing topology data, which are assumed to provide a distributed,
consistent key-value store. The default topology service plugin is etcd2.

The topology service exists for several reasons:

o It enables tablets to coordinate among themselves as a cluster.

e It enables Vitess to discover tablets, so it knows where to route queries.

o It stores Vitess configuration provided by the database administrator that is needed by many different servers in the cluster,
and that must persist between server restarts.

A Vitess cluster has one global topology service, and a local topology service in each cell.

26

Global Topology

The global topology service stores Vitess-wide data that does not change frequently. Specifically, it contains data about keyspaces
and shards as well as the master tablet alias for each shard.

The global topology is used for some operations, including reparenting and resharding. By design, the global topology service is
not used a lot.

In order to survive any single cell going down, the global topology service should have nodes in multiple cells, with enough to
maintain quorum in the event of a cell failure.

Local Topology

Each local topology contains information related to its own cell. Specifically, it contains data about tablets in the cell, the
keyspace graph for that cell, and the replication graph for that cell.

The local topology service must be available for Vitess to discover tablets and adjust routing as tablets come and go. However,
no calls to the topology service are made in the critical path of serving a query at steady state. That means queries are still
served during temporary unavailability of topology.

VSchema

A VSchema allows you to describe how data is organized within keyspaces and shards. This information is used for routing
queries, and also during resharding operations.

For a Keyspace, you can specify if it’s sharded or not. For sharded keyspaces, you can specify the list of vindexes for each table.

Vitess also supports sequence generators that can be used to generate new ids that work like MySQL auto increment columns.
The VSchema allows you to associate table columns to sequence tables. If no value is specified for such a column, then VT Gate
will know to use the sequence table to generate a new value for it.

VStream

VStream is a change notification service accessible via VT Gate. The purpose of VStream is to provide equivalent information to
the MySQL binary logs from the underlying MySQL shards of the Vitess cluster. gRPC clients, including Vitess components like
VTTablets, can subscribe to a VStream to receive change events from other shards. The VStream pulls events from one or more
VStreamer instances on VT Tablet instances, which in turn pulls events from the binary log of the underlying MySQL instance.
This allows for efficient execution of functions such as VReplication where a subscriber can indirectly receive events from the
binary logs of one or more MySQL instance shards, and then apply it to a target instance. An user can leverage VStream to
obtain in-depth information about data change events for given Vitess keyspace, shard, and position. A single VStream can also
consolidate change events from multiple shards in a keyspace, making it a convenient tool to feed a CDC (Change Data Capture)
process downstream from your Vitess datastore.

For reference, please refer to the diagram below:

Note: A VStream is distinct from a VStreamer. The former is located on the VT Gate and the latter is located on the VI Tablet.

vtctl

vtctl is a command-line tool used to administer a Vitess cluster. It is available as both a standalone tool (vtctl) and client-
server (vtctlclient in combination with vtctld). Using client-server is recommended, as it provides an additional layer of
security when using the client remotely.

Using vtctl, you can identify master and replica databases, create tables, initiate failovers, perform resharding operations, and
so forth.

As vtetl performs operations, the Topology Service is updated as needed. Other Vitess servers observe those changes and react
accordingly. For example, if you use vtctl to fail over to a new master database, vtgate sees the change and directs future write
operations to the new master.— ## vtctld

27

VTGate

Writer —insert into Subscriber

VTTablet

VTTablet

insert into

binlogdump

MySQL

binlog\

binlog

Figure 1: VStream diagram

28

vtctld is an HTTP server that lets you browse the information stored in the Topology Service. It is useful for troubleshooting
or for getting a high-level overview of the servers and their current states.

vtctld also acts as the server for vtctlclient connections.— ## VTGate

VTGate is a lightweight proxy server that routes traffic to the correct VI'Tablet servers and returns consolidated results back to
the client. It speaks both the MySQL Protocol and the Vitess gRPC protocol. Thus, your applications can connect to VT Gate
as if it is a MySQL Server.

When routing queries to the appropriate VI Tablet servers, VT Gate considers the sharding scheme, required latency and the
availability of tables and their underlying MySQL instances.

Related Vitess Documentation

¢ Execution Plans

Contribute

description: Get involved with Vitess development
You want to contribute to Vitess? That’s awesome!

In the past we have reviewed and accepted many external contributions. Examples are the Java JDBC driver, the PHP PDO
driver or VT'Gate v3 improvements.

We're looking forward to any contribution! Before you start larger contributions, make sure to reach out first and discuss your
plans with us.

This page describes for new contributors how to make yourself familiar with Vitess and the programming language Go.

Learning Go

Vitess was one of the early adaptors of Google’s programming language Go. We love it for its simplicity (e.g. compared to C++
or Java) and performance (e.g. compared to Python).

Contributing to our server code will require you to learn Go. We recommend that you follow the Go Tour to get started.

The Go Programming Language Specification is also useful as a reference guide.

Learning Vitess

Before diving into the Vitess codebase, make yourself familiar with the system and run it yourself:

o Read the What is Vitess page, in particular the architecture section.

¢ Read the Concepts and Sharding pages.

— We also recommend to look at our latest presentations. They contain many illustrations which help understanding
how Vitess works in detail.

— After studying the pages, try to answer the following question (click expand to see the answer):
Let’s assume a keyspace with 256 range-based shards: What is the name of the first, the second and the last shard?
-01, 01-02, ft-

¢ Go through the Kubernetes and local get started guides.

— While going through the tutorial, look back at the architecture and match the processes you start in Kubernetes with
the boxes in the diagram.

29

https://golang.org/
https://tour.golang.org/
https://golang.org/ref/spec

Build on CentOS

description: Instructions for building Vitess on your machine for testing and development purposes

{{< info >}} If you run into issues or have questions, we recommend posting in our Slack channel, click the Slack icon in the
top right to join. This is a very active community forum and a great place to interact with other users. {{< /info >}}

The following has been verified to work on CentOS 7. If you are new to Vitess, it is recommended to start with the local install
guide instead.

Install Dependencies

Install Go 1.134+ Download and install Golang 1.13. For example, at writing:
curl -0 https://dl.google.com/go/gol.13.9.1linux-amd64.tar.gz
sudo tar -C /usr/local -xzf gol.13.9.linux-amd64.tar.gz

Make sure to add go to your bashrc:

export PATH=$PATH:/usr/local/go/bin

Packages from CentOS repos The MariaDB version included with CentOS 7 (5.5) is not supported by Vitess. First install
the MySQL 5.7 repository from Oracle:

sudo yum localinstall -y

https://dev.mysql.com/get/mysql57 -community-release-el7-9.noarch.rpm
sudo yum install -y mysql-community-server
Install additional dependencies required to build and run Vitess:

sudo yum install -y make unzip g++ etcd curl git wget

Notes:

e We will be using etcd as the topology service. The command make tools can also install Zookeeper or Consul for you,
which requires additional dependencies.
e Vitess currently has some additional tests written in Python, but we will be skipping this step for simplicity.

Disable SELinux SELinux will not allow Vitess to launch MySQL in any data directory by default. You will need to disable
it:

sudo setenforce 0

Build Vitess

Navigate to the directory where you want to download the Vitess source code and clone the Vitess GitHub repo:

cd ~
git clone https://github.com/vitessio/vitess.git
cd vitess

Set environment variables that Vitess will require. It is recommended to put these in your .bashrc:

Additions to ~/.bashrc file

Add go PATH
export PATH=$PATH:/usr/local/go/bin

Vitess binaries
export PATH=~/vitess/bin:${PATH}

30

https://vitess.slack.com
http://golang.org/doc/install

Build Vitess:
make build

Testing your Binaries

The unit tests require the following additional packages:

sudo yum install -y ant maven zip gcc

You can then install additional components from make tools. If your machine requires a proxy to access the Internet, you will
need to set the usual environment variables (e.g. http_proxy, https_proxy, no_proxy) first:

make tools
make unit_test

In addition to running tests, you can try running the local example.

Common Build Issues

Key Already Exists This error is because etcd was not cleaned up from the previous run of the example. You can manually
fix this by running ./401_teardown.sh, removing vtdataroot and then starting again:

Error: 105: Key already exists (/vitess/zonel) [6]
Error: 105: Key already exists (/vitess/global) [6]

MySQL Fails to Initialize This error is most likely the result of SELinux enabled:

1027 18:28:23.462926 19486 mysqld.go:734] mysqld --initialize-insecure failed:
/usr/sbin/mysqld: exit status 1, output: mysqld: [ERROR] Failed to open required
defaults file: /home/morgo/vitess/vtdataroot/vt_0000000102/my.cnf

mysqld: [ERROR] Fatal error in defaults handling. Program aborted!

could not stat mysql error log (/home/morgo/vitess/vtdataroot/vt_0000000102/error.log):
stat /home/morgo/vitess/vtdataroot/vt_0000000102/error.log: no such file or directory

E1027 18:28:23.464117 19486 mysqlctl.go:254] failed init mysql: /usr/sbin/mysqld: exit
status 1, output: mysqld: [ERROR] Failed to open required defaults file:
/home/morgo/vitess/vtdataroot/vt_0000000102/my.cnf

mysqld: [ERROR] Fatal error in defaults handling. Program aborted!

E1027 18:28:23.464780 19483 mysqld.go:734] mysqld --initialize-insecure failed:
/usr/sbin/mysqld: exit status 1, output: mysqld: [ERROR] Failed to open required
defaults file: /home/morgo/vitess/vtdataroot/vt_0000000101/my.cnf

mysqld: [ERROR] Fatal error in defaults handling. Program aborted!

Build on macOS

description: Instructions for building Vitess on your machine for testing and development purposes

{{< info >}} If you run into issues or have questions, we recommend posting in our Slack channel, click the Slack icon in the
top right to join. This is a very active community forum and a great place to interact with other users. {{< /info >}}

The following has been verified to work on macOS Mojave. If you are new to Vitess, it is recommended to start with the local
install guide instead.

Install Dependencies

Install Xcode Install Xcode.

31

https://vitess.slack.com
https://developer.apple.com/xcode/

Install Homebrew and Dependencies Install Homebrew. From here you should be able to install:

brew install go@l1.13 automake git curl wget mysql@5.7

Add mysql@5.7 and go@1.13 to your PATH:

echo 'export PATH="/usr/local/opt/mysql@5.7/bin:$PATH"' >> ~/.bash_profile

echo 'export PATH="/usr/local/opt/go@l.13/bin:$PATH"' >> ~/.bash_profile

Do not install etcd via brew otherwise it will not be the version that is supported. Let it be installed when running make build.

Do not setup MySQL or etcd to restart at login.

Build Vitess

Navigate to the directory where you want to download the Vitess source code and clone the Vitess GitHub repo:
cd ~

git clone https://github.com/vitessio/vitess.git

cd vitess

Set environment variables that Vitess will require. It is recommended to put these in your ~/.bash_profile file:
Vitess binaries

export PATH=~/vitess/bin:${PATH}

Build Vitess:

make build

Testing your Binaries

The unit tests require that you first install a Java runtime. This is required for running ZooKeeper tests:

brew tap adoptopenjdk/openjdk

brew cask install adoptopenjdk8

brew info java

You will also need to install ant and maven:

brew install ant maven

You can then install additional components from make tools. If your machine requires a proxy to access the Internet, you will
need to set the usual environment variables (e.g. http_proxy, https_proxy, no_proxy) first:

make tools

make unit_test

In addition to running tests, you can try running the local example.

Common Build Issues

Key Already Exists This error is because etcd was not cleaned up from the previous run of the example. You can manually
fix this by running ./401_teardown.sh, removing vtdataroot and then starting again:

Error: 105: Key already exists (/vitess/zonel) [6]
Error: 105: Key already exists (/vitess/global) [6]

32

http://brew.sh/

/tmp/mysql.sock Already In Use This error occurs because mysql is serving on the same port that vttgate requires. To
solve this issue stop mysql service. If you have installed mysql via brew as specified above you should run:

brew services stop mysql@5.7

Build on Ubuntu/Debian

description: Instructions for building Vitess on your machine for testing and development purposes

{{< info >}} If you run into issues or have questions, we recommend posting in our Slack channel, click the Slack icon in the
top right to join. This is a very active community forum and a great place to interact with other users. {{< /info >}}

The following has been verified to work on Ubuntu 19.10 and Debian 10. If you are new to Vitess, it is recommended to start
with the local install guide instead.

Install Dependencies

Install Go 1.134+ Download and install Golang 1.13. For example, at writing:
curl -0 https://dl.google.com/go/gol.13.9.1linux-amd64.tar.gz
sudo tar -C /usr/local -xzf gol.13.9.linux-amd64.tar.gz

Make sure to add go to your bashrc:

export PATH=$PATH:/usr/local/go/bin

Packages from apt repos Install dependencies required to build and run Vitess:

Ubuntu
sudo apt-get install -y mysql-server mysql-client make unzip g++ etcd curl git wget

Debian
sudo apt-get install -y default-mysql-server default-mysql-client make unzip g++ etcd curl
wget

The services mysqld and etcd should be shutdown, since etcd will conflict with the etcd started in the examples, and mysqlctl
will start its own copies of mysqld:

sudo service mysql stop
sudo service etcd stop
sudo systemctl disable mysql
sudo systemctl disable etcd

Notes:

e We will be using etcd as the topology service. The command make tools can also install Zookeeper or Consul for you,
which requires additional dependencies.
e Vitess currently has some additional tests written in Python, but we will be skipping this step for simplicity.

Disable mysqld AppArmor Profile The mysqld AppArmor profile will not allow Vitess to launch MySQL in any data
directory by default. You will need to disable it:

sudo 1ln -s /etc/apparmor.d/usr.sbin.mysqld /etc/apparmor.d/disable/
sudo apparmor_parser -R /etc/apparmor.d/usr.sbin.mysqld

The following command should return an empty result:

sudo aa-status | grep mysqld

33

https://vitess.slack.com
http://golang.org/doc/install

Build Vitess

Navigate to the directory where you want to download the Vitess source code and clone the Vitess GitHub repo:
cd ~

git clone https://github.com/vitessio/vitess.git

cd vitess

Set environment variables that Vitess will require. It is recommended to put these in your .bashrc:

Additions to ~/.bashrc file

Add go PATH
export PATH=$PATH:/usr/local/go/bin

Vitess binaries
export PATH=~/vitess/bin:${PATH}
Build Vitess:

make build

Testing your Binaries

The unit test requires that you first install the following packages:

sudo apt-get install -y ant maven default-jdk =zip

You can then install additional components from make tools. If your machine requires a proxy to access the Internet, you will
need to set the usual environment variables (e.g. http_proxy, https_proxy, no_proxy) first:

make tools
make unit_test

In addition to running tests, you can try running the local example.

Common Build Issues

Key Already Exists This error is because etcd was not cleaned up from the previous run of the example. You can manually
fix this by running ./401_teardown.sh, removing vtdataroot and then starting again:

Error: 105: Key already exists (/vitess/zonel) [6]
Error: 105: Key already exists (/vitess/global) [6]

MySQL Fails to Initialize This error is most likely the result of an AppArmor enforcing profile being present:

1027 18:28:23.462926 19486 mysqld.go:734] mysqld --initialize-insecure failed:
/usr/sbin/mysqld: exit status 1, output: mysqld: [ERROR] Failed to open required
defaults file: /home/morgo/vitess/vtdataroot/vt_0000000102/my.cnf

mysqld: [ERROR] Fatal error in defaults handling. Program aborted!

could not stat mysql error log (/home/morgo/vitess/vtdataroot/vt_0000000102/error.log):
stat /home/morgo/vitess/vtdataroot/vt_0000000102/error.log: no such file or directory

E1027 18:28:23.464117 19486 mysqlctl.go:254] failed init mysql: /usr/sbin/mysqld: exit
status 1, output: mysqld: [ERROR] Failed to open required defaults file:
/home/morgo/vitess/vtdataroot/vt_0000000102/my. cnf

mysqld: [ERROR] Fatal error in defaults handling. Program aborted!

34

E1027 18:28:23.464780 19483 mysqld.go:734] mysqld --initialize-insecure failed:
/usr/sbin/mysqld: exit status 1, output: mysqld: [ERROR] Failed to open required
defaults file: /home/morgo/vitess/vtdataroot/vt_0000000101/my.cnf

mysqld: [ERROR] Fatal error in defaults handling. Program aborted!

The following command disables the AppArmor profile for mysqld:

sudo 1ln -s /etc/apparmor.d/usr.sbin.mysqld /etc/apparmor.d/disable/

sudo apparmor_parser -R /etc/apparmor.d/usr.sbin.mysqld

The following command should now return an empty result:

sudo aa-status | grep mysqld

If this doesn’t work, you can try making sure all lurking processes are shutdown, and then restart the example again in the /tmp
directory:

for process in “pgrep -f '(vtdataroot|VTDATAROQOT)'™; do
kill -9 $process
done;

export VTDATAROOT=/tmp/vtdataroot
./101 _initial_cluster.sh

Coding Standards
Backwards Compatibility

Vitess is being used to power many mission-critical production workloads at very large scale. Moreover, many users deploy
directly from the master branch. It is very important the changes made by contributors do not break any existing workloads.

In order to avoid disruption, the following concerns need to be kept in mind: * Does the change affect any external APIs? If
so, make sure the change satisfies the compatibility rules. * Can the change introduce a performance regression? If so, it will
be good to measure the impact using benchmarks. * If the change is substantial or is a breaking change, you must publish the
proposal as an issue with a title like RFC: Changing behavior of feature xxx. Following this, sufficient time has to be given
for others to give feedback. A breaking change must still satisfy the compatibility rules. * New features that affect existing
behavior must be introduced “behind a flag”. Users will then be encouraged to enable them, but will have the option to fallback
to the old behavior if issues are found.

What does a good PR look like?

Every GitHub pull request must go through a code review and get approved before it will be merged into the master branch.

Every pull request should meet the following requirements: * Adhere to the Go coding guidelines and watch out for
these common errors. * Contain a description message that is as detailed as possible. Here is a great example
https://github.com/vitessio/vitess/pull/6543. * Pass all CI tests that run on PRs. * For bigger changes, it is a good
idea to start by creating an issue - this is where you can discuss the feature and why it’s important. Once that is in place, you
can create the PR, as a solution to the problem described in the issue. Separating the need and the solution this way makes
discussions easier and more focused.

Testing We use unit tests both to test the code and to describe it for other developers.

e Unit tests should:

— Demonstrate every use case the change covers.
— Involve all important units being added or changed.

35

https://github.com/vitessio/enhancements/blob/master/veps/vep-3.md
https://golang.org/doc/effective_go.html
https://github.com/golang/go/wiki/CodeReviewComments

— Attempt to cover every corner case the change introduces. The thumb rule is: if it can happen in production, it must
be covered.

o Integration tests should ensure that the feature works end-to-end. They must cover all the important use cases of the
feature.

o A separate pull request into vitessio/website that updates the documentation is required if the feature changes or adds
to existing behavior.

Bug fixes If you are creating a PR to fix a bug, make sure to create an end-to-end test that fails without your change. This
is the important reproduction case that will make sure this particular bug does not show up again, and that clearly shows on
your PR what bug you are fixing.

While you are fixing the bug, it’s valuable if you take the time to step back and try to think of other places where this problem
could have impacted. It’s often possible to infer that other similar problems in this or other parts of the code base can be
prevented.

Some additional points to keep in mind: * Does this change match an existing design / bug? * Is this change going to log too
much? (Error logs should only happen when the component is in bad shape, not because of bad transient state or bad user
queries) * Does this match our current patterns? Example include RPC patterns, Retries / Waits / Timeouts patterns using
Context, ...

We also recommend that every author look over their code change before committing and ensure that the recommendations
below are being followed. This can be done by skimming through git diff --cached just before committing.

e Scan the diffs as if you're the reviewer.

Look for files that shouldn’t be checked in (temporary/generated files).
— Look for temporary code/comments you added while debugging.
Example: fmt.Println("AAAAAAAAAAAAAAAAAA™)

— Look for inconsistencies in indentation.

— Use 2 spaces in everything except Go.

— In Go, just use goimports.

o Commit message format:

— <component>: This is a short description of the change.

If necessary, more sentences follow e.g. to explain the intent of the change, how it fits
into the bigger picture or which implications it has (e.g. other parts in the system
have to be adapted.)

Sometimes this message can also contain more material for reference e.g. benchmark numbers
to justify why the change was implemented in this way.
o Comments

— // Prefer complete sentences when possible.
— Leave a space after the comment marker //.

If your reviewer leaves comments, make sure that you address them and then click “Resolve conversation”. There should be zero
unresolved discussions when the PR merges.

Assigning a Pull Request

Vitess uses code owners to auto-assign reviewers to a particular PR. If you have been granted membership to the Vitess team,
you can add additional reviewers using the right-hand side pull request menu.

During discussions, you can also refer to somebody using the Qusername syntax and they’ll receive an email as well.

If you want to receive notifications even when you aren’t mentioned, you can go to the repository page and click Watch.

36

https://github.blog/2017-07-06-introducing-code-owners/
https://github.com/vitessio/vitess

Approving a Pull Request

As a reviewer you can approve a pull request through two ways:

e Approve the pull request via GitHub’s code review system
o Reply with a comment that contains LGTM (Looks Good To Me)

Merging a Pull Request

The Vitess team will merge your pull request after the PR has been approved and CI tests have passed.

GitHub Workflow

If you are new to Git and GitHub, we recommend to read this page. Otherwise, you may skip it.

Our GitHub workflow is a so called triangular workflow:

UPSTREAM

atom/atom me/atom

LOCAL

Image Source

The Vitess code is hosted on GitHub. This repository is called upstream. You develop and commit your changes in a clone of
our upstream repository (shown as local in the image above). Then you push your changes to your forked repository (origin)
and send us a pull request. Eventually, we will merge your pull request back into the upstream repository.

Remotes

Since you should have cloned the repository from your fork, the origin remote should look like this:

$ git remote -v
origin git@github.com:<yourname>/vitess.git (fetch)
origin git@github.com:<yourname>/vitess.git (push)

To help you keep your fork in sync with the main repo, add an upstream remote:

37

https://github.com/blog/2042-git-2-5-including-multiple-worktrees-and-triangular-workflows
https://github.com/vitessio/vitess

$ git remote add upstream git@github.com:vitessio/vitess.git

$ git remote -v

origin gitQ@github.com:<yourname>/vitess.git (fetch)

origin git@github.com:<yourname>/vitess.git (push)

upstream gitO@github.com:vitessio/vitess.git (fetch)

upstream git@github.com:vitessio/vitess.git (push)

Now to sync your local master branch, do this:

$ git checkout master

(master) $ git pull upstream master

Note: In the example output above we prefixed the prompt with (master) to stress the fact that the command must be run

from the branch master.

You can omit the upstream master from the git pull command when you let your master branch always track the main
vitessio/vitess repository. To achieve this, run this command once:

(master) $ git branch --set-upstream-to=upstream/master

Now the following command syncs your local master branch as well:

(master) $ git pull

Topic Branches

Before you start working on changes, create a topic branch:

$ git checkout master

(master) $ git pull

(master) $ git checkout -b new-feature

(new-feature) $§ # You are now in the new-feature branch.

Try to commit small pieces along the way as you finish them, with an explanation of the changes in the commit message. Please
see the Code Review page for more guidance.
As you work in a package, you can run just the unit tests for that package by running go test from within that package.

When you're ready to test the whole system, run the full test suite with make test from the root of the Git tree. If you haven’t
installed all dependencies for make test, you can rely on the Travis CI test results as well. These results will be linked on your
pull request.

Committing your work

When running git commit use the —s option to add a Signed-off-by line. This is needed for the Developer Certificate of Origin.

Sending Pull Requests

Push your branch to the repository (and set it to track with —u):

(new-feature) $ git push -u origin new-feature

You can omit origin and -u new-feature parameters from the git push command with the following two Git configuration
changes:

$ git config remote.pushdefault origin
$ git config push.default current

38

https://github.com/apps/dco

The first setting saves you from typing origin every time. And with the second setting, Git assumes that the remote branch
on the GitHub side will have the same name as your local branch.

After this change, you can run git push without arguments:
(new-feature) $ git push

Then go to the repository page and it should prompt you to create a Pull Request from a branch you recently pushed. You can
also choose a branch manually.

Addressing Changes

If you need to make changes in response to the reviewer’s comments, just make another commit on your branch and then push
it again:

$ git checkout new-feature

(new-feature) $ git commit

(new-feature) $ git push

That is because a pull request always mirrors all commits from your topic branch which are not in the master branch.

Once your pull request is merged:

o close the GitHub issue (if it wasn’t automatically closed)
o delete your local topic branch (git branch -d new-feature)

FAQ

description: Frequently Asked Questions about Vitess

Configuration

description: Frequently Asked Questions about Configuration

Does the application need to know about the sharding scheme underneath Vitess?

The application does not need to know about how the data is sharded. This information is stored in a VSchema which the
VTGate servers use to automatically route your queries. This allows the application to connect to Vitess and use it as if it’s a
single giant database server.

Can I override the default db name from vt_xxx to my own? Yes. You can start vttablet with the
-init_db_name_override command line option to specify a different db name. There is no downside to performing
this override

How do I connect to vtgate using MySQL protocol? If you look at the example vtgate-up.sh script, you’ll see the
following lines:

-mysql_server_port $mysql_server_port \
-mysql_server_socket_path $mysql_server_socket_path \
-mysql_auth_server_static_file "./mysql_auth_server_static_creds. json" \

In this example, vtgate accepts MySQL connections on port 15306 and the authentication info is stored in the json file. So, you
should be able to connect to it using the following command:

mysql -h 127.0.0.1 -P 15306 -u mysql_user --password=mysql_password

39

https://github.com/vitessio/vitess
https://github.com/vitessio/vitess/compare
https://github.com/vitessio/vitess/blob/master/examples/legacy_local/scripts/vtgate-up.sh

I cannot start a cluster, and see these errors in the logs: Could not open required defaults file: /path/to/my.cnf
Most likely this means that AppArmor is running on your server and is preventing Vitess processes from accessing the my.cnf
file. The workaround is to uninstall AppArmor:

sudo service apparmor stop
sudo service apparmor teardown
sudo update-rc.d -f apparmor remove

You may also need to reboot the machine after this. Many programs automatically install AppArmor, so you may need to
uninstall again.

Queries

description: Frequently Asked Questions about Queries

Can I address a specific shard if I want to?

If necessary, you can access a specific shard by connecting to it using the shard specific database name. For a keyspace ks and
shard -80, you would connect to ks:-80.

How do I choose between master vs. replica for queries?
You can qualify the keyspace name with the desired tablet type using the @ suffix. This can be specified as part of the connection
as the database name, or can be changed on the fly through the USE command.

For example, ks@master will select ks as the default keyspace with all queries being sent to the master. Consequently ks@replica
will load balance requests across all REPLICA tablet types, and ks@rdonly will choose RDONLY.

You can also specify the database name as @master, etc, which instructs Vitess that no default keyspace was specified, but that
the requests are for the specified tablet type.

If no tablet type was specified, then VTGate chooses its default, which can be overridden with the -default_tablet_type
command line argument.

There seems to be a 10 000 row limit per query. What if I want to do a full table scan?

Vitess supports different modes. In OLTP mode, the result size is typically limited to a preset number (10 000 rows by default).
This limit can be adjusted based on your needs.

However, OLAP mode has no limit to the number of rows returned. In order to change to this mode, you may issue the following
command before executing your query:

set workload='olap'

You can also set the workload to dba mode, which allows you to override the implicit timeouts that exist in vttablet. However,
this mode should be used judiciously as it supersedes shutdown and reparent commands.

The general convention is to send OLTP queries to REPLICA tablet types, and OLAP queries to RDONLY.

Is there a list of supported/unsupported queries?

Please see “SQL Syntax” under MySQL Compatibility.

40

If T have a log of all queries from my app. Is there a way I can try them against Vitess to see how they’ll work?

Yes. The vtexplain tool can be used to preview how your queries will be executed by Vitess. It can also be used to try different
sharding scenarios before deciding on one.

Vindexes

description: Frequently Asked Questions about Vindexes

Does the Primary Vindex for a tablet have to be the same as its Primary Key?

It is not necessary that a Primary Vindex be the same as the Primary Key. In fact, there are many use cases where you would
not want this. For example, if there are tables with one-to-many relationships, the Primary Vindex of the main table is likely to
be the same as the Primary Key. However, if you want the rows of the secondary table to reside in the same shard as the parent
row, the Primary Vindex for that table must be the foreign key that points to the main table. A typical example is a user and
order table. In this case, the order table has the user_id as a foreign key to the id of the user table. The order_id may be
the primary key for order, but you may still want to choose user_id as Primary Vindex, which will make a user’s orders live
in the same shard as the user.

Get Started

description: Deploy Vitess on your favorite platform

Vitess supports binary deployment on the following platforms. See also Build On CentOS, Build on MacOS, or Build on Ubuntu
if you are interesting in building your own binary, or contributing to Vitess.

Helm Chart (deprecated)

This tutorial is deprecated. We recommend that you use the Operator instead.

This tutorial demonstrates how Vitess can be used with Minikube to deploy Vitess clusters using Helm.

Prerequisites
Before we get started, let’s get a few things out of the way:

1. Install Minikube and start a Minikube engine:

minikube start

2. Install kubectl and ensure it is in your PATH. For example, on Linux:

curl -L0O https://storage.googleapis.com/kubernetes-release/release/ curl -s

https://storage.googleapis.com/kubernetes-release/release/stable.txt /bin/linux/amd64/kube

3. Install Helm 3:

wget https://get.helm.sh/helm-v3.2.1-1linux-amd64.tar.gz

tar -xzf helm-v3.x*

copy linuz-amd64/helm into your path
4. Install the MySQL client locally. For example, on Ubuntu:

apt install mysql-client

5. Install vtctlclient locally:

If you are familiar with Go development, the easiest way to do this is: bash go get vitess.io/vitess/go/cmd/vtctlclient
If not, you can also download the latest Vitess release and extract vtctlclient from it.

41

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://helm.sh/
https://github.com/vitessio/vitess/releases

Start a single keyspace cluster

So you searched keyspace on Google and got a bunch of stuff about NoSQL... what’s the deal? It took a few hours, but after
diving through the ancient Vitess scrolls you figure out that in the NewSQL world, keyspaces and databases are essentially the
same thing when unsharded. Finally, it’s time to get started.

Change to the helm example directory:

git clone gitQ@github.com:vitessio/vitess.git
cd vitess/examples/helm

In this directory, you will see a group of yaml files. The first digit of each file name indicates the phase of example. The next
two digits indicate the order in which to execute them. For example, 101_initial_cluster.yaml is the first file of the first
phase. We shall execute that now:

helm install vitess ../../helm/vitess -f 101_initial_cluster.yaml

You should see output similar to the following:

$ helm install vitess ../../helm/vitess -f 101 _initial_cluster.yaml

NAME: vitess

LAST DEPLOYED: Tue Apr 14 20:32:18 2020
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES :

Release name: vitess

To access administrative web pages, start a proxy with:
kubectl proxy --port=8001

Then use the following URLs:

vtctld: http://localhost:8001/api/vl/namespaces/default/services/vtctld:web/proxy/app/
vtgate:
http://localhost:8001/api/vl/namespaces/default/services/vtgate-zonel:web/proxy/

Verify cluster You can check the state of your cluster with kubectl get pods, jobs. After a few minutes, it should show
that all pods are in the status of running:

$ kubectl get pods, jobs

NAME READY STATUS RESTARTS AGE
pod/commerce-apply-schema-initial-vlc6k 0/1 Completed 0 2m42s
pod/commerce-apply-vschema-initial -9wb2k 0/1 Completed 0 2m42s
pod/vtctld-58bd955948 -pgzT7k 1/1 Running 0 2m43s
pod/vtgate-zonel-c7444bbf6-t5xc6 1/1 Running 3 2m43s
pod/zonel-commerce-0-init-shard-master-gshz9 0/1 Completed 0 2m42s
pod/zonel-commerce-0-replica-0 2/2 Running 0 2m42s
pod/zonel-commerce-0O-replica-1 2/2 Running 0 2m42s
pod/zonel-commerce-0-replica-2 2/2 Running 0 2m42s
NAME COMPLETIONS DURATION AGE
job.batch/commerce-apply-schema-initial 1/1 94s 2m43s
job.batch/commerce-apply-vschema-initial 1/1 87s 2m43s
job.batch/zonel-commerce-0-init-shard-master 1/1 90s 2m43s

42

Setup Port-forward

For ease-of-use, Vitess provides a script to port-forward from kubernetes to your local machine. This script also recommends
setting up aliases for mysql and vtctlclient:

./pf.sh &

sleep 5

alias vtctlclient="vtctlclient -server=localhost:15999"
alias mysql="mysql -h 127.0.0.1 -P 15306"

Setting up aliases changes mysql to always connect to Vitess for your current session. To revert this, type unalias mysql &&
unalias vtctlclient or close your session.

Connect to your cluster You should now be able to connect to the VT Gate Server in your cluster with the MySQL client:

~/my-vitess-example> mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1

Server version: 5.7.9-Vitess Percona Server (GPL), Release 29, Revision 11ad961

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> SHOW DATABASES;

e +
| Databases |
o - +
| commerce |
fo—m - +

1 row in set (0.00 sec)

Summary In this example, we deployed a single unsharded keyspace named commerce. Unsharded keyspaces have a single
shard named 0. The following schema reflects a common ecommerce scenario that was created by the script:

create table product(
sku varbinary(128),
description varbinary(128),
price bigint,
primary key(sku)
)3
create table customer (
customer_id bigint not null auto_increment,
email varbinary(128),
primary key(customer_id)
i
create table corder (
order_id bigint not null auto_increment,
customer_id bigint,
sku varbinary (128),
price bigint,

43

primary key(order_id)
)

The schema has been simplified to include only those fields that are significant to the example:

e The product table contains the product information for all of the products.

e The customer table has a customer_id that has an auto_increment. A typical customer table would have a lot more
columns, and sometimes additional detail tables.

o The corder table (named so because order is an SQL reserved word) has an order_id auto-increment column. It also
has foreign keys into customer (customer_id) and product (sku).

Next Steps

You can now proceed with MoveTables.
Or alternatively, if you would like to teardown your example:

helm delete vitess
kubectl delete pvc -1 "app=vitess'
kubectl delete vitesstoponodes --all

Congratulations on completing this exercise!

Local Install via Docker

description: Instructions for using Vitess on your machine for testing purposes

This guide illustrates how to run a local testing Vitess setup via Docker. The Vitess environment is identical to the local setup,
but without having to install software on one’s host other than Docker.

Check out the vitessio/vitess repository

Clone the GitHub repository via:

e SSH: git clone git@github.com:vitessio/vitess.git, or:
e HTTP: git clone https://github.com/vitessio/vitess.git

cd vitess

Build the docker image

In your shell, execute:

make docker_local

This creates a docker image named vitess/local (aka vitess/local:latest)

Run the docker image

Execute:

./docker/local/run.sh

This will set up a MySQL replication topology, as well as etcd, vtctld and vtgate services.

44

o vtgate listens on http://127.0.0.1:15001 /debug/status
o vtctld listens on http://127.0.0.1:15000/debug/status
 Control panel is available at http://localhost:15000/app/

From within the docker shell, aliases are set up for your convenience. Try the following mysql commands to connect to various
tablets:

e mysql commerce

e mysql commerce@master
e mysql commerce@replica
e mysql commerce@rdonly

You will find that Vitess runs a single keyspace, single shard cluster.

Summary

In this example, we deployed a single unsharded keyspace named commerce. Unsharded keyspaces have a single shard named 0.
The following schema reflects a common ecommerce scenario that was created by the script:

create table product (
sku varbinary (128),
description varbinary(128),
price bigint,
primary key(sku)
);
create table customer (
customer_id bigint not null auto_increment,
email varbinary(128),
primary key(customer_id)
)
create table corder (
order_id bigint not null auto_increment,
customer_id bigint,
sku varbinary(128),
price bigint,
primary key(order_id)
);

The schema has been simplified to include only those fields that are significant to the example:

e The product table contains the product information for all of the products.

e The customer table has a customer_id that has an auto_increment. A typical customer table would have a lot more
columns, and sometimes additional detail tables.

o The corder table (named so because order is an SQL reserved word) has an order_id auto-increment column. It also
has foreign keys into customer (customer_id) and product (sku).

Next Steps

You can now proceed with MoveTables.

Exiting the docker shell terminates and destroys the vitess cluster.

45

http://127.0.0.1:15001/debug/status
http://127.0.0.1:15000/debug/status
http://localhost:15000/app/

Local Install

description: Instructions for using Vitess on your machine for testing purposes

This guide covers installing Vitess locally for testing purposes, from pre-compiled binaries. We will launch multiple copies of
mysqld, so it is recommended to have greater than 4GB RAM, as well as 20GB of available disk space.

A docker setup is also available, which requires no dependencies on your local host.

Install MySQL and etcd

Vitess supports MySQL 5.6+ and MariaDB 10.04+. We recommend MySQL 5.7 if your installation method provides a choice:

Ubuntu based
sudo apt install -y mysql-server etcd curl

Debian
sudo apt install -y default-mysql-server default-mysql-client etcd curl

Yum based
sudo yum -y localinstall

https://dev.mysql.com/get/mysql57 -community-release-el7-9.noarch.rpm
sudo yum -y install mysql-community-server etcd curl

On apt-based distributions the services mysqld and etcd will need to be shutdown, since etcd will conflict with the etcd started
in the examples, and mysqlctl will start its own copies of mysqld:

Debian and Ubuntu

sudo service mysql stop

sudo service etcd stop

sudo systemctl disable mysql
sudo systemctl disable etcd

Disable AppArmor or SELinux

AppArmor/SELinux will not allow Vitess to launch MySQL in any data directory by default. You will need to disable it:
AppArmor:

Debian and Ubuntu
sudo 1ln -s /etc/apparmor.d/usr.sbin.mysqld /etc/apparmor.d/disable/
sudo apparmor_parser -R /etc/apparmor.d/usr.sbin.mysqld

The following command should return an empty result:
sudo aa-status | grep mysqld
SELinux:

CentO0S
sudo setenforce O

Install Vitess

Download the latest binary release for Vitess on Linux. For example with Vitess 6:

tar -xzf vitess-6.0.20-20200508-147bcba.tar.gz
cd vitess-6.0.20-20200508-147bcba

sudo mkdir -p /usr/local/vitess

sudo mv * /usr/local/vitess/

46

https://github.com/vitessio/vitess/releases

Make sure to add /usr/local/vitess/bin to the PATH environment variable. You can do this by adding the following to your
$HOME/ . bashrec file:

export PATH=/usr/local/vitess/bin:${PATH}

You are now ready to start your first cluster! Open a new terminal window to ensure your .bashrc file changes take effect.

Start a Single Keyspace Cluster

Start by copying the local examples included with Vitess to your preferred location. For our first example we will deploy a single
unsharded keyspace. The file 101_initial_cluster.sh is for example 1 phase 01. Lets execute it now:

cp -r /usr/local/vitess/examples/local ~/my-vitess-example
cd ~/my-vitess-example
./101 initial_cluster.sh

You should see output similar to the following:

~/my-vitess-example> ./101 _initial_cluster.sh
$./101 _initial_cluster.sh

add /vitess/global

add /vitess/zonel

add zonel CellInfo

etcd start done...

Starting vtctld...

Starting MySQL for tablet zonel-0000000100...
Starting vttablet for zonel-0000000100...
HTTP/1.1 200 OK

Date: Wed, 25 Mar 2020 17:32:45 GMT
Content-Type: text/html; charset=utf-8

Starting MySQL for tablet zonel-0000000101...
Starting vttablet for zonel-0000000101...
HTTP/1.1 200 OK

Date: Wed, 25 Mar 2020 17:32:53 GMT
Content-Type: text/html; charset=utf-8

Starting MySQL for tablet zonel-0000000102...
Starting vttablet for zonel-0000000102...
HTTP/1.1 200 OK

Date: Wed, 25 Mar 2020 17:33:01 GMT
Content-Type: text/html; charset=utf-8

W0325 11:33:01.932674 16036 main.go:64] W0325 17:33:01.930970 reparent.go:185]
master-elect tablet zonel-0000000100 is not the shard master, proceeding anyway as
-force was used

w0325 11:33:01.933188 16036 main.go:64] W0325 17:33:01.931580 reparent.go:191]
master-elect tablet zonel-0000000100 is not a master in the shard, proceeding anyway as
-force was used

You can also verify that the processes have started with pgrep:

~/my-vitess-example> pgrep -fl vtdataroot
14119 etcd

14176 vtctld

14251 mysqld_safe

14720 mysqld

47

14787 vttablet

14885 mysqld_safe

156352 mysqld

15396 vttablet

15492 mysqld_safe

15959 mysqld

16006 vttablet

16112 vtgate

The exact list of processes will vary. For example, you may not see mysqld_safe listed.

If you encounter any errors, such as ports already in use, you can kill the processes and start over:

pkill -9 -e -f '(vtdataroot|VTDATAROOT)' # kill Vitess processes
rm -rf vtdataroot

Setup Aliases

For ease-of-use, Vitess provides aliases for mysql and vtctlclient:

source ./env.sh

Setting up aliases changes mysql to always connect to Vitess for your current session. To revert this, type unalias mysql &&
unalias vtctlclient or close your session.

Connect to your cluster

You should now be able to connect to the VT'Gate server that was started in 101_initial_cluster.sh:

~/my-vitess-example> mysql

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2

Server version: 5.7.9-Vitess (Ubuntu)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners .

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show tables;

B e +
| Tables_in_vt_commerce |
e +
| corder |
| customer |
| product |
B e +

3 rows in set (0.00 sec)

You can also browse to the vtctld console using the following URL:

http://localhost:15000

48

Summary

In this example, we deployed a single unsharded keyspace named commerce. Unsharded keyspaces have a single shard named 0.
The following schema reflects a common ecommerce scenario that was created by the script:

create table product (
sku varbinary (128),
description varbinary (128),
price bigint,
primary key(sku)
)
create table customer (
customer_id bigint not null auto_increment,
email varbinary(128),
primary key(customer_id)
);
create table corder (
order_id bigint not null auto_increment,
customer_id bigint,
sku varbinary(128),
price bigint,
primary key(order_id)
);

The schema has been simplified to include only those fields that are significant to the example:

e The product table contains the product information for all of the products.

e The customer table has a customer_id that has an auto_increment. A typical customer table would have a lot more
columns, and sometimes additional detail tables.

o The corder table (named so because order is an SQL reserved word) has an order_id auto-increment column. It also
has foreign keys into customer (customer_id) and product (sku).

Next Steps

You can now proceed with MoveTables.
Or alternatively, if you would like to teardown your example:

./401_teardown.sh
rm -rf vtdataroot

Vitess Operator for Kubernetes

PlanetScale provides a Vitess Operator for Kubernetes, released under the Apache 2.0 license. The following steps show how to
get started using Minikube:

Prerequisites
Before we get started, let’s get a few things out of the way:

1. Install Minikube and start a Minikube engine. We recommend using Kubernetes 1.14, as this is a common denom-
inator across public clouds: bash minikube start --kubernetes-version=v1.14.10 --cpus=8 --memory=11000
--disk-size=50g

If you do not have a machine with 11GB of memory to spare, you could also consider using GKE instead. An equivalent setup
can be deployed from the Cloud Shell with: bash gcloud container clusters create vitess --cluster-version
1.14 --zone us-eastl-b --num-nodes 5

49

https://github.com/planetscale/vitess-operator
https://kubernetes.io/docs/tasks/tools/install-minikube/

2. Install kubectl and ensure it is in your PATH. For example, on Linux:
curl -LO
https://storage.googleapis.com/kubernetes-release/release/vl.14.9/bin/linux/amd64/kubectl
3. Install the MySQL client locally. For example, on Ubuntu:

apt install mysql-client

4. Install vtctlclient locally:

If you are familiar with Go development, the easiest way to do this is: bash go get vitess.io/vitess/go/cmd/vtctlclient
If not, you can also download the latest Vitess release and extract vtctlclient from it.

Install the Operator

Change to the operator example directory:

git clone git@github.com:vitessio/vitess.git
cd vitess/examples/operator

Install the operator:

kubectl apply -f operator.yaml

Bring up an initial cluster

In this directory, you will see a group of yaml files. The first digit of each file name indicates the phase of example. The next
two digits indicate the order in which to execute them. For example, 101_initial_cluster.yaml is the first file of the first
phase. We shall execute that now:

kubectl apply -f 101 _initial_cluster.yaml

Verify cluster You can check the state of your cluster with kubectl get pods. After a few minutes, it should show that all
pods are in the status of running:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
example-etcd-faf13de3-1 1/1 Running 0 78s
example-etcd-faf13de3-2 1/1 Running 0 78s
example-etcd-faf13de3-3 1/1 Running 0 78s
example-vttablet -zonel -2469782763-bfadd780 3/3 Running 1 78s
example-vttablet -zonel -2548885007-46a852d0 3/3 Running 1 78s
example-zonel-vtctld-1d4dcad0-59d8498459 -kwz6b 1/1 Running 2 78s
example-zonel-vtgate-bc6cde92-6bd99c6888-vwcjb 1/1 Running 2 78s
vitess-operator -8454d86687 -4wfnc 1/1 Running 0 2m29s

Setup Port-forward

{{< warning >}} The port-forward will only forward to a specific pod. Currently, kubectl does not automatically terminate a
port-forward as the pod dissapears due to apply/upgrade operations. You will need to manually restart the port-forward. {{</
warning >}}

For ease-of-use, Vitess provides a script to port-forward from Kubernetes to your local machine. This script also recommends
setting up aliases for mysql and vtctlclient:

50

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/vitessio/vitess/releases

./pf.sh &
alias vtctlclient="vtctlclient -server=localhost:15999"
alias mysql="mysql -h 127.0.0.1 -P 15306 -u user"

Setting up aliases changes mysql to always connect to Vitess for your current session. To revert this, type unalias mysql &&
unalias vtctlclient or close your session.

Create Schema

Load our initial schema:

vtctlclient ApplySchema -sql="$(cat create_commerce_schema.sql)" commerce
vtctlclient ApplyVSchema -vschema="$(cat vschema_commerce_initial.json)" commerce

Connect to your cluster You should now be able to connect to the VT'Gate Server in your cluster with the MySQL client:

~/vitess/examples/operator$ mysql

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3

Server version: 5.7.9-Vitess MySQL Community Server (GPL)

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show databases;

T +
| Databases |
o — - +
| commerce |
o - +

1 row in set (0.00 sec)

Summary In this example, we deployed a single unsharded keyspace named commerce. Unsharded keyspaces have a single
shard named 0. The following schema reflects a common ecommerce scenario that was created by the script:

create table product(
sku varbinary(128),
description varbinary (128),
price bigint,
primary key(sku)
IE
create table customer (
customer_id bigint not null auto_increment,
email varbinary(128),
primary key(customer_id)
iE
create table corder (
order_id bigint not null auto_increment,
customer_id bigint,
sku varbinary(128),

51

price bigint,
primary key(order_id)

J;

The schema has been simplified to include only those fields that are significant to the example:

e The product table contains the product information for all of the products.

e The customer table has a customer_id that has an auto_increment. A typical customer table would have a lot more
columns, and sometimes additional detail tables.

o The corder table (named so because order is an SQL reserved word) has an order_id auto-increment column. It also
has foreign keys into customer (customer_id) and product (sku).

Next Steps

You can now proceed with MoveTables.
Or alternatively, if you would like to teardown your example:

kubectl delete -f 101 _initial_cluster.yaml

Congratulations on completing this exercise!

Overview

description: High-level information about Vitess

The Vitess overview documentation provides general information about Vitess that’s less immediately practical than what you’ll
find in Get Started section and the User Guides.

Architecture
The Vitess platform consists of a number of server processes, command-line utilities, and web-based utilities, backed by a
consistent metadata store.

Depending on the current state of your application, you could arrive at a full Vitess implementation through a number of different
process flows. For example, if you're building a service from scratch, your first step with Vitess would be to define your database
topology. However, if you need to scale your existing database, you’d likely start by deploying a connection proxy.

Vitess tools and servers are designed to help you whether you start with a complete fleet of databases or start small and scale
over time. For smaller implementations, vttablet features like connection pooling and query rewriting help you get more from
your existing hardware. Vitess’ automation tools then provide additional benefits for larger implementations.

The diagram below illustrates Vitess’ components:

For additonal details on each of the components, see Concepts.

Cloud Native

Vitess is well-suited for Cloud deployments because it enables databases to incrementally add capacity. The easiest way to run
Vitess is via Kubernetes.

52

Vitess Runtime Admin

Application
l— victl
commands
VTGate — Topology Command line
(metadata store)
- ’/
vtctld
VTTablet VTTablet VTTablet
GUI
Server Server Server
MySQL MySQL MySQL

Figure 2: Architecture Diagram

Vitess on Kubernetes

Kubernetes is an open-source orchestration system for Docker containers, and Vitess can run as a Kubernetes-aware cloud native
distributed database.

Kubernetes handles scheduling onto nodes in a compute cluster, actively manages workloads on those nodes, and groups containers
comprising an application for easy management and discovery. This provides an analogous open-source environment to the way
Vitess runs in YouTube, on the predecessor to Kubernetes.

Related Vitess Documentation

e Kubernetes Quickstart

History

description: Born at YouTube, released as Open Source

Vitess was created in 2010 to solve the MySQL scalability challenges that the team at YouTube faced. This section briefly
summarizes the sequence of events that led to Vitess’ creation:

1. YouTube’s MySQL database reached a point when peak traffic would soon exceed the database’s serving capacity. To
temporarily alleviate the problem, YouTube created a master database for write traffic and a replica database for read
traffic.

2. With demand for cat videos at an all-time high, read-only traffic was still high enough to overload the replica database.
So YouTube added more replicas, again providing a temporary solution.

3. Eventually, write traffic became too high for the master database to handle, requiring YouTube to shard data to handle
incoming traffic. As an aside, sharding would have also become necessary if the overall size of the database became too
large for a single MySQL instance.

53

4. YouTube’s application layer was modified so that before executing any database operation, the code could identify the
right database shard to receive that particular query.

Vitess let YouTube remove that logic from the source code, introducing a proxy between the application and the database to
route and manage database interactions. Since then, YouTube has scaled its user base by a factor of more than 50, greatly
increasing its capacity to serve pages, process newly uploaded videos, and more. Even more importantly, Vitess is a platform
that continues to scale.

Vitess becomes a CNCF project

The CNCF serves as the vendor-neutral home for many of the fastest-growing open source projects. In February 2018 the
Technical Oversight Committee (TOC) voted to accept Vitess as a CNCF incubation project. Vitess became the eighth CNCF
project to graduate in November 2019, joining Kubernetes, Prometheus, Envoy, CoreDNS, containerd, Fluentd, and Jaeger.

Scalability Philosophy

Scalability problems can be solved using many approaches. This document describes Vitess’ approach to address these problems.

Small instances

When deciding to shard or break databases up into smaller parts, it’s tempting to break them just enough that they fit in one
machine. In the industry, it’s common to run only one MySQL instance per host.

Vitess recommends that instances be broken up into manageable chunks (250GB per MySQL server), and not to shy away from
running multiple instances per host. The net resource usage would be about the same. But the manageability greatly improves
when MySQL instances are small. There is the complication of keeping track of ports, and separating the paths for the MySQL
instances. However, everything else becomes simpler once this hurdle is crossed.

There are fewer lock contentions to worry about, replication is a lot happier, production impact of outages become smaller,
backups and restores run faster, and a lot more secondary advantages can be realized. For example, you can shuffle instances
around to get better machine or rack diversity leading to even smaller production impact on outages, and improved resource
usage.

Durability through replication
Traditional data storage software treated data as durable as soon as it was flushed to disk. However, this approach is impractical
in today’s world of commodity hardware. Such an approach also does not address disaster scenarios.

The new approach to durability is achieved by copying the data to multiple machines, and even geographical locations. This
form of durability addresses the modern concerns of device failures and disasters.

Many of the workflows in Vitess have been built with this approach in mind. For example, turning on semi-sync replication is
highly recommended. This allows Vitess to failover to a new replica when a master goes down, with no data loss. Vitess also
recommends that you avoid recovering a crashed database. Instead, create a fresh one from a recent backup and let it catch up.

Relying on replication also allows you to loosen some of the disk-based durability settings. For example, you can turn off
sync_binlog, which greatly reduces the number of IOPS to the disk thereby increasing effective throughput.

Consistency model

Before sharding or moving tables to different keyspaces, the application needs to be verified (or changed) such that it can tolerate
the following changes:

¢ Cross-shard reads may not be consistent with each other. Conversely, the sharding decision should also attempt to minimize
such occurrences because cross-shard reads are more expensive.

54

https://www.cncf.io
https://www.cncf.io/blog/2018/02/05/cncf-host-vitess/
https://www.cncf.io/announcement/2019/11/05/cloud-native-computing-foundation-announces-vitess-graduation/

e In “best-effort mode”, cross-shard transactions can fail in the middle and result in partial commits. You could instead use
“2PC mode” transactions that give you distributed atomic guarantees. However, choosing this option increases the write
cost by approximately 50%.

Single shard transactions continue to remain ACID, just like MySQL supports it.

If there are read-only code paths that can tolerate slightly stale data, the queries should be sent to REPLICA tablets for OLTP,
and RDONLY tablets for OLAP workloads. This allows you to scale your read traffic more easily, and gives you the ability to
distribute them geographically.

This trade-off allows for better throughput at the expense of stale or possibly inconsistent reads, since the reads may be lagging
behind the master, as data changes (and possibly with varying lag on different shards). To mitigate this, VT Gate servers are
capable of monitoring replica lag and can be configured to avoid serving data from instances that are lagging beyond X seconds.

For a true snapshot, queries must be sent to the master within a transaction. For read-after-write consistency, reading from the
master without a transaction is sufficient.

To summarize, these are the various levels of consistency supported:

e REPLICA/RDONLY read: Servers can be scaled geographically. Local reads are fast, but can be stale depending on replica
lag.

e MASTER read: There is only one worldwide master per shard. Reads coming from remote locations will be subject to network
latency and reliability, but the data will be up-to-date (read-after-write consistency). The isolation level is READ_COMMITTED.

e MASTER transactions: These exhibit the same properties as MASTER reads. However, you get REPEATABLE_READ
consistency and ACID writes for a single shard. Support is underway for cross-shard Atomic transactions.

As for atomicity, the following levels are supported:

e SINGLE: disallow multi-db transactions.
e MULTI: multi-db transactions with best effort commit.
e TWOPC: multi-db transactions with 2PC commit.

No multi-master Vitess doesn’t support multi-master setup. It has alternate ways of addressing most of the use cases that
are typically solved by multi-master:

e Scalability: There are situations where multi-master gives you a little bit of additional runway. However, since the
statements have to eventually be applied to all masters, it’s not a sustainable strategy. Vitess addresses this problem
through sharding, which can scale indefinitely.

e High availability: Vitess integrates with Orchestrator, which is capable of performing a failover to a new master within
seconds of failure detection. This is usually sufficient for most applications.

o Low-latency geographically distributed writes: This is one case that is not addressed by Vitess. The current recommen-
dation is to absorb the latency cost of long-distance round-trips for writes. If the data distribution allows, you still have
the option of sharding based on geographic affinity. You can then setup masters for different shards to be in different
geographic location. This way, most of the master writes can still be local.

Multi-cell

Vitess is meant to run in multiple data centers / regions / cells. In this part, we’ll use “cell” to mean a set of servers that are
very close together, and share the same regional availability.

A cell typically contains a set of tablets, a vtgate pool, and app servers that use the Vitess cluster. With Vitess, all components
can be configured and brought up as needed:

e The master for a shard can be in any cell. If cross-cell master access is required, vtgate can be configured to do so easily
(by passing the cell that contains the master as a cell to watch).

55

e It is not uncommon to have the cells that can contain the master be more provisioned than read-only serving cells. These
master-capable cells may need one more replica to handle a possible failover, while still maintaining the same replica serving
capacity.

o Failing over from a master in one cell to a master in a different cell is no different than a local failover. It has an implication
on traffic and latency, but if the application traffic also gets re-directed to the new cell, the end result is stable.

o It is also possible to have some shards with a master in one cell, and some other shards with their master in another cell.
vtgate will just route the traffic to the right place, incurring extra latency cost only on the remote access. For instance,
creating U.S. user records in a database with masters in the U.S. and European user records in a database with masters
in Europe is easy to do. Replicas can exist in every cell anyway, and serve the replica traffic quickly.

e Replica serving cells are a good compromise to reduce user-visible latency: they only contain replica servers, and master
access is always done remotely. If the application profile is mostly reads, this works really well.

o Not all cells need rdonly (or batch) instances. Only the cells that run batch jobs, or OLAP jobs, really need them.

Note Vitess uses local-cell data first, and is very resilient to any cell going down (most of our processes handle that case gracefully).

Supported Databases

Vitess deploys, scales and manages clusters of open-source SQL database instances. Currently, Vitess supports the MySQL,
Percona and MariaDB databases.

The VTGate proxy server advertises its version as MySQL 5.7.

MySQL versions 5.6 to 8.0

Vitess supports the core features of MySQL versions 5.6 to 8.0, with some limitations. Vitess also supports Percona Server for
MySQL versions 5.6 to 8.0.

With MySQL 5.6 reaching end of life in February 2021, it is recommended to deploy MySQL 5.7 and later.

MariaDB versions 10.0 to 10.3

Vitess supports the core features of MariaDB versions 10.0 to 10.3. Vitess does not yet support version 10.4 of MariaDB.

See also

e MySQL Compatibility

What Is Vitess

Vitess is a database solution for deploying, scaling and managing large clusters of open-source database instances. It currently
supports MySQL and MariaDB. It’s architected to run as effectively in a public or private cloud architecture as it does on
dedicated hardware. It combines and extends many important SQL features with the scalability of a NoSQL database. Vitess
can help you with the following problems:

1. Scaling a SQL database by allowing you to shard it, while keeping application changes to a minimum.
2. Migrating from baremetal to a private or public cloud.
3. Deploying and managing a large number of SQL database instances.

Vitess includes compliant JDBC and Go database drivers using a native query protocol. Additionally, it implements the MySQL
server protocol which is compatible with virtually any other language.

Vitess served all YouTube database traffic for over five years. Many enterprises have now adopted Vitess for their production
needs.

56

https://www.mysql.com/
https://www.percona.com/software/mysql-database/percona-server
https://mariadb.org
https://www.percona.com/software/mysql-database/percona-server
https://www.percona.com/software/mysql-database/percona-server
https://github.com/vitessio/vitess/issues/5362

Features

Performance

— Connection pooling - Multiplex front-end application queries onto a pool of MySQL connections to optimize perfor-

mance.

— Query de-duping — Reuse results of an in-flight query for any identical requests received while the in-flight query was

still executing.

— Transaction manager — Limit number of concurrent transactions and manage deadlines to optimize overall throughput.

Protection

— Query rewriting and sanitization — Add limits and avoid non-deterministic updates.

— Query blacklisting — Customize rules to prevent potentially problematic queries from hitting your database.
— Query killer — Terminate queries that take too long to return data.

— Table ACLs — Specify access control lists (ACLs) for tables based on the connected user.

Monitoring

— Performance analysis tools let you monitor, diagnose, and analyze your database performance.

Topology Management Tools

— Master management tools (handles reparenting)
— Web-based management GUI
— Designed to work in multiple data centers / regions

Sharding

— Virtually seamless dynamic re-sharding
— Vertical and Horizontal sharding support

— Multiple sharding schemes, with the ability to plug-in custom ones

Comparisons to other storage options

The following sections compare Vitess to two common alternatives, a vanilla MySQL implementation and a NoSQL implemen-

tation.

Vitess vs. Vanilla MySQL Vitess improves a vanilla MySQL implementation in several ways:

Vanilla MySQL

Vitess

Every MySQL connection has a memory overhead that
ranges between 256KB and almost 3MB, depending on
which MySQL release you're using. As your user base
grows, you need to add RAM to support additional
connections, but the RAM does not contribute to faster
queries. In addition, there is a significant CPU cost
associated with obtaining the connections.

Poorly written queries, such as those that don’t set a
LIMIT, can negatively impact database performance for all
users.

Sharding is a process of partitioning your data to improve
scalability and performance. MySQL lacks native sharding
support, requiring you to write sharding code and embed
sharding logic in your application.

A MySQL cluster using replication for availability has a
master database and a few replicas. If the master fails, a
replica should become the new master. This requires you to
manage the database lifecycle and communicate the current
system state to your application.

57

Vitess creates very lightweight connections. Vitess’
connection pooling feature uses Go’s concurrency support
to map these lightweight connections to a small pool of
MySQL connections. As such, Vitess can easily handle
thousands of connections.

Vitess employs a SQL parser that uses a configurable set of
rules to rewrite queries that might hurt database
performance.

Vitess supports a variety of sharding schemes. It can also
migrate tables into different databases and scale up or
down the number of shards. These functions are performed
non-intrusively, completing most data transitions with just
a few seconds of read-only downtime.

Vitess helps to manage the lifecycle of your database
scenarios. It supports and automatically handles various
scenarios, including master failover and data backups.

Vanilla MySQL

Vitess

A MySQL cluster can have custom database configurations
for different workloads, like a master database for writes,
fast read-only replicas for web clients, slower read-only
replicas for batch jobs, and so forth. If the database has
horizontal sharding, the setup is repeated for each shard,
and the app needs baked-in logic to know how to find the
right database.

Vitess uses a topology backed by a consistent data store,
like etcd or ZooKeeper. This means the cluster view is
always up-to-date and consistent for different clients. Vitess
also provides a proxy that routes queries efficiently to the
most appropriate MySQL instance.

Vitess vs. NoSQL If you're considering a NoSQL solution primarily because of concerns about the scalability of MySQL,
Vitess might be a more appropriate choice for your application. While NoSQL provides great support for unstructured data,
Vitess still offers several benefits not available in NoSQL datastores:

NoSQL

Vitess

NoSQL databases do not define relationships between

database tables, and only support a subset of the SQL
language.

NoSQL datastores do not usually support transactions.
NoSQL solutions have custom APIs, leading to custom
architectures, applications, and tools.

NoSQL solutions provide limited support for database
indexes compared to MySQL.

Vitess is not a simple key-value store. It supports complex
query semantics such as where clauses, JOINS, aggregation
functions, and more.

Vitess supports transactions.

Vitess adds very little variance to MySQL, a database that
most people are already accustomed to working with.
Vitess allows you to use all of MySQL’s indexing
functionality to optimize query performance.

Older Version Docs

description: PDFs of vitess.io/docs at the time of previous versions

To view a PDF of the state of the Vitess Documentation for previous versions of Vitess please follow the links below:

e Vitess Docs 5.0 on April 17, 2020

e Vitess Docs 6.0 on July 28, 2020— ## Reference description: Detailed information about specific Vitess functionality

Features

description: Reference documents for Vitess features

Messaging

Vitess messaging gives the application an easy way to schedule and manage work that needs to be performed asynchronously.
Under the covers, messages are stored in a traditional MySQL table and therefore enjoy the following properties:

any messages and use the data for performing analytics.

commit succeeds.

58

Scalable: Because of vitess’s sharding abilities, messages can scale to very large QPS or sizes.

Guaranteed delivery: A message will be indefinitely retried until a successful ack is received.

Non-blocking: If the sending is backlogged, new messages continue to be accepted for eventual delivery.

Adaptive: Messages that fail delivery are backed off exponentially.

Analytics: The retention period for messages is dictated by the application. One could potentially choose to never delete

Transactional: Messages can be created or acked as part of an existing transaction. The action will complete only if the

https://drive.google.com/file/d/1gK6ELHFxr5X9Rieg64XJ7iFcnOuUlwb-/view?usp=sharing
https://drive.google.com/file/d/11r7trOcjjKnxcPJWa8Ae7lkti_Ny0HqV/view?usp=sharing

The properties of a message are chosen by the application. However, every message needs a uniquely identifiable key. If the
messages are stored in a sharded table, the key must also be the primary vindex of the table.

Although messages will generally be delivered in the order they’re created, this is not an explicit guarantee of the system. The
focus is more on keeping track of the work that needs to be done and ensuring that it was performed. Messages are good for:

o Handing off work to another system.

o Recording potentially time-consuming work that needs to be done asynchronously.
Scheduling for future delivery.

¢ Accumulating work that could be done during off-peak hours.

Messages are not a good fit for the following use cases:

o Broadcasting of events to multiple subscribers.
¢ Ordered delivery.
¢ Real-time delivery.

Creating a message table

The current implementation requires a fixed schema. This will be made more flexible in the future. There will also be a custom
DDL syntax. For now, a message table must be created like this:

create table my_message (

time_scheduled bigint,

id bigint,

time_next bigint,

epoch bigint,

time_created bigint,

time_acked bigint,

message varchar(128),

primary key(time_scheduled, id),

unique index id_idx(id),

index next_idx(time_next, epoch)
) comment

'vitess_message ,vt_ack_wait=30,vt_purge_after=86400,vt_batch_size=10,vt_cache_size=10000,vt_po

The application-related columns are as follows:

e id: can be any type. Must be unique.

e message: can be any type.

e time_scheduled: must be a bigint. It will be used to store unix time in nanoseconds. If unspecified, the Now value is
inserted.

The above indexes are recommended for optimum performance. However, some variation can be allowed to achieve different
performance trade-offs.

The comment section specifies additional configuration parameters. The fields are as follows:

e vitess_message: Indicates that this is a message table.

e vt_ack_wait=30: Wait for 30s for the first message ack. If one is not received, resend.

o vt_purge_after=86400: Purge acked messages that are older than 86400 seconds (1 day).

e vt_batch_size=10: Send up to 10 messages per RPC packet.

e vt_cache_size=10000: Store up to 10000 messages in the cache. If the demand is higher, the rest of the items will have
to wait for the next poller cycle.

e vt_poller_interval=30: Poll every 30s for messages that are due to be sent.

If any of the above fields are missing, vitess will fail to load the table. No operation will be allowed on a table that has failed to
load.

59

Enqueuing messages

The application can enqueue messages using an insert statement:
insert into my_message(id, message) values(l, 'hello world')
These inserts can be part of a regular transaction. Multiple messages can be inserted to different tables. Avoid accumulating

too many big messages within a transaction as it consumes memory on the VTTablet side. At the time of commit, memory
permitting, all messages are instantly enqueued to be sent.

Messages can also be created to be sent in the future:

insert into my_message(id, message, time_scheduled) values(l, 'hello world', :future_time)

future_time must be the unix time expressed in nanoseconds.

Receiving messages

Processes can subscribe to receive messages by sending a MessageStream request to VI'Gate. If there are multiple subscribers,
the messages will be delivered in a round-robin fashion. Note that this is not a broadcast; Each message will be sent to at most
one subscriber.

The format for messages is the same as a vitess Result. This means that standard database tools that understand query results
can also be message recipients. Currently, there is no SQL format for subscribing to messages, but one will be provided soon.

Subsetting It’s possible that you may want to subscribe to specific shards or groups of shards while requesting messages.
This is useful for partitioning or load balancing. The MessageStream API allows you to specify these constraints. The request
parameters are as follows:

e Name: Name of the message table.

o Keyspace: Keyspace where the message table is present.

e Shard: For unsharded keyspaces, this is usually “0”. However, an empty shard will also work. For sharded keyspaces, a
specific shard name can be specified.

o KeyRange: If the keyspace is sharded, streaming will be performed only from the shards that match the range. This must
be an exact match.

Acknowledging messages

A received (or processed) message can be acknowledged using the MessageAck API call. This call accepts the following param-
eters:

e Name: Name of the message table.
o Keyspace: Keyspace where the message table is present. This field can be empty if the table name is unique across all
keyspaces.

e Ids: The list of ids that need to be acked.

Once a message is successfully acked, it will never be resent.

Exponential backoff

A message that was successfully sent will wait for the specified ack wait time. If no ack is received by then, it will be resent.
The next attempt will be 2x the previous wait, and this delay is doubled for every attempt.

Purging

Messages that have been successfully acked will be deleted after their age exceeds the time period specified by vt_purge_after.

60

Advanced usage

The MessageAck functionality is currently an API call and cannot be used inside a transaction. However, you can ack messages
using a regular DML. It should look like this:

update my_message set time_acked = :time_acked, time_next = null where id in ::ids and
time_acked is null

You can manually change the schedule of existing messages with a statement like this:

update my_message set time_next = :time_next, epoch = :epoch where id in ::ids and
time_acked is null

This comes in handy if a bunch of messages had chronic failures and got postponed to the distant future. If the root cause of
the problem was fixed, the application could reschedule them to be delivered immediately. You can also optionally change the
epoch. Lower epoch values increase the priority of the message and the back-off is less aggressive.

You can also view messages using regular select queries.

Undocumented features
These are features that were previously known limitations, but have since been supported and are awaiting further documentation.

o Flexible columns: Allow any number of application defined columns to be in the message table.
e No ACL check for receivers: To be added.

e Monitoring support: To be added.

e Dropped tables: The message engine does not currently detect dropped tables.

Known limitations
The message feature is currently in alpha, and can be improved. Here is the list of possible limitations/improvements:

e Proactive scheduling: Upcoming messages can be proactively scheduled for timely delivery instead of waiting for the next
polling cycle.

e Changed properties: Although the engine detects new message tables, it does not refresh properties of an existing table.

e A SELECT style syntax for subscribing to messages.

e No rate limiting.

o Usage of partitions for efficient purging.

Replication

{{< warning >}} Vitess requires the use of Row-Based Replication with GTIDs enabled. In addition, Vitess only supports the
default binlog_row_image of FULL. {{< /warning >}}

Vitess makes use of MySQL Replication for both high availability and to receive a feed of changes to database tables. This feed
is then used in features such as VReplication, and to identify schema changes so that caches can be updated.

Semi-Sync

Vitess strongly recommends the use of Semi-synchronous replication for High Availability. When enabled in Vitess, semi-sync
has the following characteristics:

e The master will only accept writes if it has at least one replica connected, and configured correctly to send semi-sync ACKs.
Vitess configures the semi-sync timeout to essentially an unlimited number so that it will never fallback to asyncronous
replication. This is important to prevent split brain (or alternate futures) in case of a network partition. If we can verify
all replicas have stopped replicating, we know the old master is not accepting writes, even if we are unable to contact the
old master itself.

61

o Tablets of type rdonly will not send semi-sync ACKs. This is intentional because rdonly tablets are not eligible to be
promoted to master, so Vitess avoids the case where a rdonly tablet is the single best candidate for election at the time of
master failure.

These behaviors combine to give you the property that, in case of master failure, there is at least one other replica that has
every transaction that was ever reported to clients as having completed. You can then (manually, or using Orchestrator to pick
the replica that is farthest ahead in GTID position and promote that to be the new master.

Thus, you can survive sudden master failure without losing any transactions that were reported to clients as completed. In
MySQL 5.7+, this guarantee is strengthened slightly to preventing loss of any transactions that were ever committed on the
original master, eliminating so-called phantom reads.

On the other hand these behaviors also give a requirement that each shard must have at least 2 tablets with type replica (with
addition of the master that can be demoted to type replica this gives a minimum of 3 tablets with initial type replica). This
will allow for the master to have a semi-sync acker when one of the replica tablets is down for any reason (for a version update,
machine reboot, schema swap or anything else).

With regard to replication lag, note that this does not guarantee there is always at least one replica from which queries will
always return up-to-date results. Semi-sync guarantees that at least one replica has the transaction in its relay log, but it has
not necessarily been applied yet. The only way Vitess guarantees a fully up-to-date read is to send the request to the master.

Database Schema Considerations

o Row-based replication requires that replicas have the same schema as the master, and corruption will likely occur if the
column order does not match. Earlier versions of Vitess which used Statement-Based replication recommended applying
schema changes on replicas first, and then swapping their role to master. This method is no longer recommended and a
tool such as gh-ost or pt-online-schema-change should be used instead.

e Using a column of type FLOAT or DOUBLE as part of a Primary Key is not supported. This limitation is because Vitess may
try to execute a query for a value (for example 2.2) which MySQL will return zero results, even when the approximate
value is present.

e It is not recommended to change the schema at the same time a resharding operation is being performed. This limitation
exists because interpreting RBR events requires accurate knowledge of the table’s schema, and Vitess does not always
correctly handle the case that the schema has changed.

Point In Time Recovery
Point in Time Recovery
Supported Databases

e MySQL 5.7 ###+# Believed to work, but untested
e MySQL 8.0

Introduction The Point in Time Recovery feature in Vitess enables recovery of data to a specific point time (timestamp).
There can be multiple recovery requests active at the same time. It is possible to recover across sharding actions, i.e. you can
recover to a time when there were two shards even though at present there are four.

Point in Time Recovery leverages two Vitess features: 1. The use of SNAPSHOT keyspaces for recovery of the last backup before
a requested specific timestamp to restore to. 2. Integration with a binlog server to allow vttablet to apply binary logs from the
recovered backup up to the specified timestamp.

62

http://bugs.mysql.com/bug.php?id=62174
https://github.com/github/gh-ost
https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html

Use cases

e Accidental deletion of data, e.g. dropping a table by mistake, running an UPDATE or DELETE with an incorrect WHERE
clause, etc.

e Corruption of data due to application bugs.

o Corruption of data due to MySQL bugs or underlying hardware (e.g. storage) problems.

Preconditions

e There should be a Vitess backup taken before the desired point in time.

e There should be continuous binlogs available from the backup time to the desired point in time.

o This feature is tested using Ripple as the binlog server. However, it should be possible to use a MySQL instance as source
for the binlogs as well.

Example usage To use this feature, you need a usable backup of Vitess data and continuous binlogs.
Here is how you can create a backup.

$ vtctlclient -server <vtctld_host>:<vtctld_port> Backup zonel-101

Here zone1-101 is the tablet alias of a replica tablet in the shard that you want to back up. Note that you can also use
vtctlclient BackupShard to just specify a keyspace and shard, and have Vitess choose the tablet to run the backup for you,
instead of having to specify the tablet alias explicitly.

To maintain continuous binlogs, you need to have a binlog server pointing to the master (or a replica, assuming that the replica
is also maintaining its own binlogs, which is the default Vitess configuration). You can use Ripple as a binlog server, although
there are other options; and you could use an existing MySQL server as well.

If you use Ripple, you will need to configure it yourself, and ensure you take care of the following: - You should have a highly
available binlog server setup. If the binlog server goes down, you need to ensure that it is back up and able to synchronize the
MySQL binary logs from its upstream MySQL server before the upstream server deletes the current binlog. If you do not do
this, you will end up with gaps in your binlogs, which could make restoring to a specific point in time impossible. Make sure
that you setup your operational and monitoring procedures accordingly. - The binlog files should be safely kept at some reliable
and recoverable location (e.g. AWS S3, remote file storage).

Once the above is done, you can proceed with doing a recovery.

Recovery Procedure First, you need to create a SNAPSHOT keyspace with a base_keyspace pointing to the original keyspace
you are recovering the backup of. This can be done by using following:

$ vtctlclient -server <vtctld_host>:<vtctld_port> CreateKeyspace -keyspace_type=SNAPSHOT
-base_keyspace=originalks -snapshot_time=2020-07-17T18:25:20Z restoreks

Here: - originalks is the base keyspace, i.e. the keyspace we took a backup of, and are trying to recover. - snapshot_time is
the timestamp of the point in time to we want to recover to. Note the use of the Z in the timestamp, indicating it is expressed
in UTC. - restoreks is the name of recovery keyspace, i.e. the keyspace to which we are restoring our backup.

Next, you can launch the vttablet, which as part of vttablet’s normal initialization procedure will look for a backup to restore.
It will detect the meta-information you added on the keyspace topology node when creating the keyspace above. It will then use
that information to restore the last backup earlier than the timestamp provided for the specific shard the vttablet is in.

Here are the command line arguments vttablet uses in this process. You may already be using some of these as part of
your normal vttablet initialization parameters (e.g. if you are using the Vitess K8s operator): - -init_keyspace restoreks
- here restoreks is the recovery keyspace name which we created earlier - ~init_db_name_override vt_originalks - here
vt_originalks is the name of the original underlying database for the keyspace that you backed up and want to restore. Usually,
this takes the form of vt_ prepended to the keyspace name. However, the original underlying database could also have been
using an -init_db_name_override directive of its own, and this value should then be set to match that. - -init_shard

0 - here 0 is the shard name (or range) which we want to recover. - -binlog_host x.x.x.x - hostname or IP address of

63

https://github.com/google/mysql-ripple
https://github.com/google/mysql-ripple

binlog server. - -binlog_port XXXX - TCP port of binlog server. - -binlog_user XXXX - username to access binlog server. -
-binlog_password YYYY - password to access binlog server. - -pitr_gtid_lookup_timeout duration - See below for details.

And then, depending on your backup storage implementation, you can use a variety of flags: - ~backup_storage_implementation
file - for plain file backup type. If you use this option, you will also need to specify: - -file_backup_storage_root - with a path
pointing to your backup storage location. - ~backup_storage_implementation s3 - for backing up to S3. If you use this option,
you may need additional flags like: - -s3_backup_aws_region - -s3_backup_storage_bucket - -s3_backup_storage_root -
There are more -backup_storage_implementation options like gcs and others.

You will also probably want to use other flags for backup and restore like: - -backup_engine_implementation xtrabackup -
Use Percona Xtrabackup to take online backups. Without this flag, the mysql instance on the replica being backed up will be
shut down during the backup. - -backup_storage_compress true - gzip compress the backup (default is true). You need to
be consistent in your use of these flags for backup and restore.

Once the restore of the last backup earlier than the snapshot_time timestamp is completed, the vttablet proceeds to use the
binlog_x* parameters to connect to the binlog server and then apply all binlog events from the time of the backup until the
timestamp provided.

Since the last backup for each shard making up the keyspace could be taken at different points in time, the amount of time that
it takes to apply these events may differ between restores of different shards in the keyspace.

Note that to restore to the specified snapshot_time timestamp, vttablet needs to find the GTID corresponding to the last event
before this timestamp from the binlog server. This is an expensive operation and may take some time. By default the timeout
for this operation is one minute (1m). This can be changed by setting the vttablet -pitr_gtid_lookup_timeout flag.

VTGate will automatically exclude tablets belonging to snapshot keyspaces from query routing unless they are specifically
addressed using USE restoreks or by using queries of the form SELECT ... FROM restoreks.table.

The base keyspace’s vschema will be copied over to the new snapshot keyspace as a default. If desired this can be overwritten
by the user. Care needs to be taken to set require_explicit_routing to true when modifying a snapshot keyspace’s vschema,
or you will bypass the VT Gate routing safety feature described above.

Schema Management

Using Vitess requires you to work with two different types of schemas:

1. The MySQL database schema. This is the schema of the individual MySQL instances.
2. The VSchema, which describes all the keyspaces and how they’re sharded.

The workflow for the VSchema is as follows:

1. Apply the VSchema for each keyspace using the ApplyVschema command. This saves the VSchemas in the global topology
service.

2. Execute RebuildVSchemaGraph for each cell (or all cells). This command propagates a denormalized version of the combined
VSchema to all the specified cells. The main purpose for this propagation is to minimize the dependency of each cell from
the global topology. The ability to push a change to only specific cells allows you to canary the change to make sure that
it’s good before deploying it everywhere.

This document describes the vtctl commands that you can use to review or update your schema in Vitess.

Note that this functionality is not recommended for long-running schema changes. It is recommended to use a tool such as
pt-online-schema-change or gh-ost instead.

Reviewing your schema

This section describes the following vtctl commands, which let you look at the schema and validate its consistency across tablets
or shards:

64

https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html
https://github.com/github/gh-ost

¢ GetSchema

e ValidateSchemaShard

o ValidateSchemaKeyspace
e GetVSchema

¢ GetSrvVSchema

GetSchema The GetSchema command displays the full schema for a tablet or a subset of the tablet’s tables. When you call
GetSchema, you specify the tablet alias that uniquely identifies the tablet. The <tablet alias> argument value has the format
<cell name>-<uid>.

Note: You can use the vtctl ListAllTablets command to retrieve a list of tablets in a cell and their unique IDs.
The following example retrieves the schema for the tablet with the unique ID test-000000100:
GetSchema test-000000100

ValidateSchemaShard The ValidateSchemaShard command confirms that for a given keyspace, all of the replica tablets in
a specified shard have the same schema as the master tablet in that shard. When you call ValidateSchemaShard, you specify
both the keyspace and the shard that you are validating.

The following command confirms that the master and replica tablets in shard 0 all have the same schema for the user keyspace:

ValidateSchemaShard user/O

ValidateSchemaKeyspace The ValidateSchemaKeyspace command confirms that all of the tablets in a given keyspace have
the the same schema as the master tablet on shard 0 in that keyspace. Thus, whereas the ValidateSchemaShard command
confirms the consistency of the schema on tablets within a shard for a given keyspace, ValidateSchemaKeyspace confirms the
consistency across all tablets in all shards for that keyspace.

The following command confirms that all tablets in all shards have the same schema as the master tablet in shard 0 for the user
keyspace:

ValidateSchemaKeyspace user

GetVSchema The GetVSchema command displays the global VSchema for the specified keyspace.

GetSrvVSchema The GetSrvVSchema command displays the combined VSchema for a given cell.

Changing your schema

This section describes the following commands:

e ApplySchema
e ApplyVSchema
¢ RebuildVSchemaGraph

ApplySchema Vitess’ schema modification functionality is designed the following goals in mind:

o Enable simple updates that propagate to your entire fleet of servers.

e Require minimal human interaction.

e Minimize errors by testing changes against a temporary database.

o Guarantee very little downtime (or no downtime) for most schema updates.
e Do not store permanent schema data in the topology service.

65

Note that, at this time, Vitess only supports data definition statements that create, modify, or delete database tables. For
instance, ApplySchema does not affect stored procedures or grants.

The ApplySchema command applies a schema change to the specified keyspace on every master tablet, running in par-
allel on all shards. Changes are then propagated to replicas. The command format is: ApplySchema {-sql=<sql> ||
-sql_file=<filename>} <keyspace>

When the ApplySchema action actually applies a schema change to the specified keyspace, it performs the following steps:

1. It finds shards that belong to the keyspace, including newly added shards if a resharding event has taken place.

2. It validates the SQL syntax and determines the impact of the schema change. If the scope of the change is too large, Vitess
rejects it. See the permitted schema changes section for more detail.

3. It employs a pre-flight check to ensure that a schema update will succeed before the change is actually applied to the live
database. In this stage, Vitess copies the current schema into a temporary database, applies the change there to validate
it, and retrieves the resulting schema. By doing so, Vitess verifies that the change succeeds without actually touching live
database tables.

4. Tt applies the SQL command on the master tablet in each shard.

The following sample command applies the SQL in the user__table.sql file to the user keyspace:
ApplySchema -sql_file=user_table.sql user

Permitted schema changes The ApplySchema command supports a limited set of DDL statements. In addition, Vitess
rejects some schema changes because large changes can slow replication and may reduce the availability of your overall system.

The following list identifies types of DDL statements that Vitess supports:

e CREATE TABLE
o« CREATE INDEX
o CREATE VIEW
o ALTER TABLE
e ALTER VIEW

o RENAME TABLE
o« DROP TABLE

« DROP INDEX

« DROP VIEW

In addition, Vitess applies the following rules when assessing the impact of a potential change:

o DROP statements are always allowed, regardless of the table’s size.
o ALTER statements are only allowed if the table on the shard’s master tablet has 100,000 rows or less.
o For all other statements, the table on the shard’s master tablet must have 2 million rows or less.

If a schema change gets rejected because it affects too many rows, you can specify the flag —~allow_long_unavailability to
tell ApplySchema to skip this check. However, we do not recommend this. Instead, you should apply large schema changes by
using an external tool such as gh-ost or pt-online-schema-change.

ApplyVSchema The ApplyVSchema command applies the specified VSchema to the keyspace. The VSchema can be specified
as a string or in a file.

RebuildVSchemaGraph The RebuildVSchemaGraph command propagates the global VSchema to a specific cell or the list
of specified cells.

66

https://dev.mysql.com/doc/refman/5.6/en/sql-syntax-data-definition.html

Schema Routing Rules

The Vitess routing rules feature is a powerful mechanism for directing traffic to the right keyspaces, shards or tablet types. It
fulfils the following use cases:

¢ Routing traffic during resharding: During resharding, you can specify rules that decide where to send reads and writes.
For example, you can move traffic from the source shard to the destination shards, but only for the rdonly or replica
types. This gives you the option to try out the new shards and make sure they will work as intended before committing
to move the rest of the traffic.

« Table equivalence: The new VReplication feature allows you to materialize tables in different keyspaces. In this situation,
you can specify that two tables are ‘equivalent’. This will allow VT Gate to use the best possible plan depending on the
input query.

ApplyRoutingRules

You can use the vtctlclient command to apply routing rules:

ApplyRoutingRules {-rules=<rules> || -rules_file=<rules_file=<sql file>} [-cells=cl,c2,...]
[-skip_rebuild] [-dry-run]

Syntax

Resharding Routing rules can be specified using JSON format. Here’s an example:

{"rules": [
{
"from_table": "t@rdonly",
"to_tables": ["target.t"]
b, {
"from_table": "target.t",
"to_tables": ["source.t"]
}, {
"from_table": "t",
"to_tables": ["source.t"]
3
1}

The above JSON specifies the following rules: * If you sent a query accessing t for an rdonly instance, then it would be sent to
table t in the target keyspace. * If you sent a query accessing target .t for anything other than rdonly, it would be sent t in
the source keyspace. * If you sent a query accessing t without any qualification, it would be sent to t in the source keyspace.

These rules are an example of how they can be used to shift traffic for a table during a vertical resharding process. In this case,
the assumption is that we are moving t from source to target, and so far, we’ve shifted traffic for just the rdonly tablet types.

By updating these rules, you can eventually move all traffic to target.t

The rules are applied only once. The resulting targets need to specify fully qualified table names.

Table equivalence The routing rules allow you to specify table equivalence. Here’s an example:

{"rules": [
{
"from_table": "product",
"to_tables": ["lookup.product", "user.uproduct"]

X
1}

67

In the above case, we are declaring that the product table is present in both lookup and user. If a query is issued using the
unqualified product table, then VT Gate will consider sending the query to both lookup.product as well as user.uproduct
(note the name change).

For example, if user was a sharded keyspace, and the query joined a user table with product, then vtgate will know that it’s
better to send the query to the user keyspace instead of lookup.

Typically, table equivalence makes sense when a view table is materialized from a source table using VReplication.

Orthogonality The tablet type targeting and table equivalence features are orthogonal to each other and can be combined.
Although there’s no immediate use case for this, it’s a possibility we can consider if the use case arises.

Sharding

description: Shard widely, shard often.

Sharding is a method of horizontally partitioning a database to store data across two or more database servers. This document
explains how sharding works in Vitess and the types of sharding that Vitess supports.

Overview

A keyspace in Vitess can be sharded or unsharded. An unsharded keyspace maps directly to a MySQL database. If sharded,
the rows of the keyspace are partitioned into different databases of identical schema.

For example, if an application’s “user” keyspace is split into two shards, each shard contains records for approximately half of
the application’s users. Similarly, each user’s information is stored in only one shard.

Note that sharding is orthogonal to (MySQL) replication. A Vitess shard typically contains one MySQL master and many
MySQL replicas. The master handles write operations, while replicas handle read-only traffic, batch processing operations, and
other tasks. Each MySQL instance within the shard should have the same data, excepting some replication lag.

Supported Operations Vitess supports the following types of sharding operations:

e Horizontal sharding: Splitting or merging shards in a sharded keyspace
e Vertical sharding: Moving tables from an unsharded keyspace to a different keyspace.

With these features, you can start with a single keyspace that contains all of your data (in multiple tables). As your database
grows, you can move tables to different keyspaces (vertical split) and shard some or all of those keyspaces (horizontal split)
without any real downtime for your application.

Sharding scheme

Vitess allows you to choose the type of sharding scheme by the choice of your Primary Vindex for the tables of a shard. Once you
have chosen the Primary Vindex, you can choose the partitions depending on how the resulting keyspace IDs are distributed.

Vitess calculates the sharding key or keys for each query and then routes that query to the appropriate shards. For example, a
query that updates information about a particular user might be directed to a single shard in the application’s “user” keyspace.
On the other hand, a query that retrieves information about several products might be directed to one or more shards in the
application’s “product” keyspace.

68

Key Ranges and Partitions Vitess uses key ranges to determine which shards should handle any particular query.

o A key range is a series of consecutive keyspace ID values. It has starting and ending values. A key falls inside the range
if it is equal to or greater than the start value and strictly less than the end value.
e A partition represents a set of key ranges that covers the entire space.

When building the serving graph for a sharded keyspace, Vitess ensures that each shard is valid and that the shards collectively
constitute a full partition. In each keyspace, one shard must have a key range with an empty start value and one shard, which
could be the same shard, must have a key range with an empty end value.

e An empty start value represents the lowest value, and all values are greater than it.
e An empty end value represents a value larger than the highest possible value, and all values are strictly lower than it.

Vitess always converts sharding keys to a left-justified binary string for computing a shard. This left-justification makes the
right-most zeroes insignificant and optional. Therefore, the value 0x80 is always the middle value for sharding keys. So, in a
keyspace with two shards, sharding keys that have a binary value lower than 0x80 are assigned to one shard. Keys with a binary
value equal to or higher than 0x80 are assigned to the other shard.

Several sample key ranges are shown below:

Start=[], End=[]: Full Key Range

Start=[], End=[0x80]: Lower half of the Key Range.

Start=[0x80], End=[]: Upper half of the Key Range.

Start=[0x40], End=[0x80]: Second quarter of the Key Range.
Start=[0xFF00], End=[0xFF80]: Second to last 1/512th of the Key Range.

Two key ranges are consecutive if the end value of one range equals the start value of the other range.

Shard Names A shard’s name identifies the start and end of the shard’s key range, printed in hexadecimal and separated by
a hyphen. For instance, if a shard’s key range is the array of bytes beginning with [0x80 | and ending, noninclusively, with |
0xc0], then the shard’s name is 80-cO.

Using this naming convention, the following four shards would be a valid full partition:

e -40
e 40-80
e 80-c0
e c0-

Shards do not need to handle the same size portion of the key space. For example, the following five shards would also be a
valid full partition, possibly with a highly uneven distribution of keys.

e -80

e 80-cO

e ¢0-dc00
e dc00-dc80
e dc80-

Resharding

Resharding describes the process of updating the sharding scheme for a keyspace and dynamically reorganizing data to match
the new scheme. During resharding, Vitess copies, verifies, and keeps data up-to-date on new shards while the existing shards
continue to serve live read and write traffic. When you’re ready to switch over, the migration occurs with only a few seconds of
read-only downtime. During that time, existing data can be read, but new data cannot be written.

The table below lists the sharding (or resharding) processes that you would typically perform for different types of requirements:

69

Requirement Action

Uniformly increase read capacity Add replicas or split shards
Uniformly increase write capacity Split shards

Reclaim overprovisioned resources Merge shards and/or keyspaces
Increase geo-diversity Add new cells and replicas

Cool a hot tablet For read access, add replicas or split

shards. For write access, split shards.

Additional Tools and Processes Vitess provides the following tools to help manage range-based shards:

e The vtctl command-line tool supports functions for managing keyspaces, shards, tablets, and more.
e Client APIs account for sharding operations.— #+# Table lifecycle

Vitess manages a table lifecycle flow, an abstraction and automation for a DROP TABLE operation.

Problems with DROP TABLE

Vitess inherits the same issues that MySQL has with DROP TABLE. Doing a direct DROP TABLE my_table in production can be
a risky operation. In busy environments this can lead to a complete lockdown of the database for the duration of seconds, to
minutes and more. This is typically less of a problem in Vitess than it might be in normal MySQL, if you are keeping your shard
instances (and thus shard table instances) small, but could still be a problem.

There are two locking aspects to dropping tables:

o Purging dropped table’s pages from the InnoDB buffer pool(s)
e Removing table’s data file (.ibd) from the filesystem.

The exact locking behavior and duration can vary depending on various factors: - Which filesystem is used - Whether the
MySQL adaptive hash index is used - Whether you are attempting to hack around some of the MySQL DROP TABLE performance
problems using hard links

It is common practice to avoid direct DROP TABLE statements and to follow a more elaborate table lifecycle.

Vitess table lifecycle

The lifecycle offered by Vitess consists of the following stages or some subset:
in use -> hold -> purge -> evac -> drop -> remowved

To understand the flow better, consider the following breakdown:

e In use: the table is serving traffic, like a normal table.

e hold: the table is renamed to some arbitrary new name. The application cannot see it, and considers it as gone. However,
the table still exists, with all of its data intact. It is possible to reinstate it (e.g. in case we realize some application still
requires it) by renaming it back to its original name.

o purge: the table is in the process of being purged (i.e. rows are being deleted). The purge process completes when the table
is completely empty. At the end of the purge process the table no longer has any pages in the buffer pool(s). However, the
purge process itself loads the table pages to cache in order to delete rows. Vitess purges the table a few rows at a time,
and uses a throttling mechanism to reduce load. Vitess disables binary logging for the purge. The deletes are not written
to the binary logs and are not replicated. This reduces load from disk IO, network, and replication lag. Data is not purged
on the replicas. Experience shows that dropping a table populated with data on a replica has lower performance impact
than on the primary, and the tradeoff is worthwhile.

70

e evac: a waiting period during which we expect normal production traffic to slowly evacuate the (now inactive) table’s
pages from the buffer pool. Vitess hard codes this period for 72 hours. The time is heuristic, there is no tracking of table
pages in the buffer pool.

e drop: an actual DROP TABLE is imminent

o removed: table is dropped. When using InnoDB and innodb_file_per_table this means the .ibd data file backing the
table is removed, and disk space is reclaimed.

Lifecycle subsets and configuration

Different environments and users have different requirements and workflows. For example:

e Some wish to immediately start purging the table, wait for pages to evacuate, then drop it.
e Some want to keep the table’s data for a few days, then directly drop it.
o Some just wish to directly drop the table, they see no locking issues (e.g. smaller table).

Vitess supports all subsets via —table_gc_lifecycle flag to vttablet. The default is "hold,purge,evac,drop" (the complete
cycle). Users may configure any subset, e.g. "purge,drop", "hold,drop", "hold,evac,drop" or even just "drop".

Vitess will always work the steps in this order: hold -> purge -> evac -> drop. For example, setting -table_gc_lifecycle
"drop,hold" still first holds, then drops

All subsets end with a drop, even if not explicitly mentioned. Thus, "purge" is interpreted as "purge,drop".

Automated lifecycle

Vitess internally uses the above table lifecycle for online, managed schema migrations. Online schema migration tools gh-ost
and pt-online-schema-change create artifact tables or end with leftover tables: Vitess automatically collects those tables. The
artifact or leftover tables are immediate moved to purge state. Depending on -table_gc_lifecycle, they may spend time in
this state, getting purged, or immediately transitioned to the next state.

User-facing DROP TABLE lifecycle

Table lifecycle is not yet available directly to the application user. Vitess will introduce a special syntax to allow users to indicate
they want Vitess to manage a table’s lifecycle.

Tablet throttler

VTTablet runs a cooperative throttling service. This service probes the shard’s MySQL topology and observes replication lag
on servers. This throttler is derived from GitHub’s freno.

Note: the Vitess documentation is transitioning from the term “Master” (with regard to MySQL replication) to “Primary”. this
document reflects this transition.

Why throttler: maintaining low replication lag

Vitess uses MySQL with asynchronous or semi-synchronous replication. In these modes, each shard has a primary instance
that applies changes and logs them to the binary log. The replicas for that shard will get binary log entries from the primary,
potentially acknowledge them (if semi-synchronous replication is enabled), and apply them. A running replica normally applies
the entries as soon as possible, unless it is stopped or configured to delay. However, if the replica is busy, then it may not have
the resources to apply events in a timely fashion, and can therefore start lagging. For example, if the replica is serving traffic, it
may lack the necessary disk I/O or CPU to avoid lagging behind the primary.

Maintaining low replication lag is important in production for two reasons:

71

https://github.com/github/freno

e A lagging replica may not be representative of the data on the primary. Reads from the replica reflect data that is not
consistent with the data on the primary. This is noticeable on web services following read-after-write from the replica, and
this can produce results not reflecting the write.

e An up-to-date replica makes for a good failover experience. If all replicas are lagging, then a failover process must choose
between waiting for a replica to catch up or losing data.

Some common database operations include mass writes to the database, including the following:

e Online schema migrations duplicating entire tables

e Mass population of columns, such as populating the new column with derived values following an ADD COLUMN migration
e Purging of old data

o Purging of tables as part of safe table DROP operation

These operations can easily incur replication lag. However, these operations are typically not time-limited. It is possible to
rate-limit them to reduce database load.

This is where a throttler becomes useful. A throttler can detect when replication lag is low, a cluster is healthy, and operations
can proceed. It can also detect when replication lag is high and advise applications to hold the next operation.

Applications are expected to break down their tasks into small sub-tasks. For example, instead of deleting 1,000,000 rows, an
application should only delete 50 at a time. Between these sub-tasks, the application should check in with the throttler.

The throttler is only intended for use with operations such as the above mass write cases. It should not be used for ongoing,
normal OLTP queries.

Throttler overview

Each vttablet runs an internal throttler service, and provides API endpoints to the throttler. Only the primary throttler is
doing actual work at any given time. The throttlers on the replicas are mostly dormant, and wait for their turn to become
“leaders,” such as when the tablet transitions into MASTER (primary) type.

The primary tablet’s throttler continuously does the following things:

e The throttler confirms it is still the primary tablet for its shard.
e Every 10sec, the throttler uses the topology server to refresh the shard’s tablets list.
e The throttler probes all REPLICA tablets for their replication lag. This is done by querying the _vt.heartbeat table.

— The throttler begins in dormant probe mode. As long as no application or client is actually looking for metrics, it
probes the servers at multi-second intervals.

— When applications check for throttle advice, the throttler begins probing servers in subsecond intervals. It reverts to
dormant probe mode if no requests are made in the duration of 1min.

o The throttler aggregates the last probed values from all relevant tablets. This is the cluster’s metric .
The cluster’s metric is only as accurate as the following metrics:

e The probe interval
e The heartbeat injection interval
e The aggregation interval

The error margin equals approximately the sum of the above values, plus additional overhead. The defaults for these intervals
are as follows: + Probe interval: 100ms + Aggregation interval: 100ms + Heartbeat interval: 250ms

The user may override the heartbeat interval by sending -heartbeat_interval flag to vttablet.

Thus, the aggregated interval can be off, by default, by some 500ms. This makes it inaccurate for evaluations that require high
resolution lag evaluation. This resolution is sufficient for throttling purposes.

The throttler allows clients and applications to check for throttle advice. The check is an HTTP request, HEAD method, or GET
method. Throttler returns one of the following HTTP response codes as an answer:

72

e 200 (OK): The application may write to the data store. This is the desired response.

e 404 (Not Found): The check contains an unknown metric name. This can take place immediately upon startup or
immediately after failover, and should resolve within 10 seconds.

o 417 (Expectation Failed): The requesting application is explicitly forbidden to write. The throttler does not implement
this at this time.

e 429 (Too Many Requests): Do not write. A normal, expected state indicating there is replication lag. This is the hint for
applications or clients to withhold writes.

o 500 (Internal Server Error): An internal error has occurred. Do not write.

Normally, apps will see either 200 or 429. An app should only ever proceed to write to the database when it receives a 200
response code.

The throttler chooses the response by comparing the replication lag with a pre-defined threshold. If the lag is lower than the
threshold, response can be 200 (OK). If the lag is higher than the threshold, the response would be 429 (Too Many Requests).

The throttler only collects and evaluates lag on a set of predefined tablet types. By default, this tablet type set is REPLICA. See
Configuration.

When the throttler sees no relevant replicas in the shard, it allows writes by responding with HTTP 200 OK.

Configuration

e The throttler is currently disabled by default. Use the vttablet option -enable-lag-throttler to enable the throttler.
When the throttler is disabled, it still serves /throttler/check API and responds with HTTP 200 OK to all requests.
When the throttler is enabled, it implicitly also runs heartbeat injections.

e Use the vttablet flag —~throttle_threshold to set a lag threshold value. The default threshold is 1sec and is set upon
tablet startup. For example, to set a half-second lag threshold, use the flag ~throttle_threshold=0.5s.

o To set the tablet types that the throttler queries for lag, use the vttablet flag ~throttle_tablet_types="replica,rdonly".
The default tablet type is replica; this type is always implicitly included in the tablet types list. You may add any other
tablet type. Any type not specified is ignored by the throttler.

API & usage
Applicaitons use the API /throttler/check.
e Applications may indicate their identity via ?7app=<name> parameter.
 Applications may also declare themselves to be low priority via ?7p=1low param. Managed online schema migrations (gh-ost,
pt-online-schema-change) do so, as does the table purge process.

Examples:

o gh-ost uses this throttler endpoint: /throttler/check?app=gh-ost&p=low
o A data backfill application may use this parameter: /throttler/check?app=backfill (using normal priority)

A HEAD request is sufficient. A GET request also provides a JSON output. For example:

o {"StatusCode":200,"Value":0.207709,"Threshold":1, "Message":""}
e {"StatusCode":429,"Value":3.494452, " "Threshold":1, "Message": "Threshold exceeded"}
o {"StatusCode":404,"Value":0,"Threshold":0,"Message":"No such metric"}

In the first two above examples we can see that the tablet is configured to throttle at 1sec
Tablet also provides /throttler/status endpoint. This is useful for monitoring and management purposes.
Example: Healthy primary tablet

The following command gets throttler status on a tablet hosted on tablet1, serving on port 15100.

73

$ curl -s http://tabletl1:15100/throttler/status | jq

This API call returns the following JSON object:
{

"Keyspace": "commerce",

"Shard": "80-c0",

"IsLeader": true,

"IsOpen": true,

"IsDormant": false,

"AggregatedMetrics": {
"mysql/local": {

"Value": 0.193576

}

},

"MetricsHealth": {}

}

"IsLeader": true indicates this tablet is active, is the primary, and is running probes. "IsDormant": false, means that an
application has recently issued a check, and the throttler is probing for lag at high frequency.

Example: replica tablet
The following command gets throttler status on a tablet hosted on tablet2, serving on port 15100.

$ curl -s http://tablet2:15100/throttler/status | jq

This API call returns the following JSON object:
{

"Keyspace": "commerce",
"Shard": "80-cO0",
"IsLeader": false,
"IsOpen": true,
"IsDormant": true,
"AggregatedMetrics": {},
"MetricsHealth": {}

Resources

« freno project page
o Mitigating replication lag and reducing read load with freno, a GitHub Engineering blog post

Topology Service

This document describes the Topology Service, a key part of the Vitess architecture. This service is exposed to all Vitess
processes, and is used to store small pieces of configuration data about the Vitess cluster, and provide cluster-wide locks. It also
supports watches, and master election.

Vitess uses a plugin implementation to support multiple backend technologies for the Topology Service (etcd, ZooKeeper, Consul).
Concretely, the Topology Service handles two functions: it is both a distributed lock manager and a repository for topology
metadata. In earlier versions of Vitess, the Topology Serice was also referred to as the Lock Service.

74

https://github.com/github/freno
https://github.blog/2017-10-13-mitigating-replication-lag-and-reducing-read-load-with-freno/
http://en.wikipedia.org/wiki/Distributed_lock_manager

Requirements and usage

The Topology Service is used to store information about the Keyspaces, the Shards, the Tablets, the Replication Graph, and
the Serving Graph. We store small data structures (a few hundred bytes) per object.

The main contract for the Topology Service is to be very highly available and consistent. It is understood it will come at a
higher latency cost and very low throughput.

We never use the Topology Service as an RPC or queuing mechanism or as a storage system for logs. We never depend on the
Topology Service being responsive and fast to serve every query.

The Topology Service must also support a Watch interface, to signal when certain conditions occur on a node. This is used, for
instance, to know when the Keyspace topology changes (e.g. for resharding).

Global vs Local We differentiate two instances of the Topology Service: the Global instance, and the per-cell Local instance:

e The Global instance is used to store global data about the topology that doesn’t change very often, e.g. information about
Keyspaces and Shards. The data is independent of individual instances and cells, and needs to survive a cell going down
entirely.

e There is one Local instance per cell, that contains cell-specific information, and also rolled-up data from the Global +
Local cell to make it easier for clients to find the data. The Vitess local processes should not use the Global topology
instance, but instead the rolled-up data in the Local topology server as much as possible.

The Global instance can go down for a while and not impact the local cells (an exception to that is if a reparent needs to be
processed, it might not work). If a Local instance goes down, it only affects the local tablets in that instance (and then the cell
is usually in bad shape, and should not be used).

Vitess will not use the global or local topology service as part of serving individual queries. The Topology Service is only used
to get the topology information at startup and in the background.

Recovery If a Local Topology Service dies and is not recoverable, it can be wiped out. All the tablets in that cell then need
to be restarted so they re-initialize their topology records (but they won’t lose any MySQL data).

If the Global Topology Service dies and is not recoverable, this is more of a problem. All the Keyspace / Shard objects have to
be recreated or be restored. Then the cells should recover.

Global data

This section describes the data structures stored in the Global instance of the topology service.

Keyspace The Keyspace object contains various information, mostly about sharding: how is this Keyspace sharded, what is
the name of the sharding key column, is this Keyspace serving data yet, how to split incoming queries, ...

An entire Keyspace can be locked. We use this during resharding for instance, when we change which Shard is serving what
inside a Keyspace. That way we guarantee only one operation changes the Keyspace data concurrently.

Shard A Shard contains a subset of the data for a Keyspace. The Shard record in the Global topology service contains:

o the Master tablet alias for this shard (that has the MySQL master).

« the sharding key range covered by this Shard inside the Keyspace.

« the tablet types this Shard is serving (master, replica, batch, ..), per cell if necessary.
o if using filtered replication, the source shards this shard is replicating from.

o the list of cells that have tablets in this shard.

e shard-global tablet controls, like blacklisted tables no tablet should serve in this shard.

A Shard can be locked. We use this during operations that affect either the Shard record, or multiple tablets within a Shard
(like reparenting), so multiple tasks cannot concurrently alter the data.

75

VSchema data The VSchema data contains sharding and routing information for the VT'Gate V3 APL.

Local data

This section describes the data structures stored in the Local instance (per cell) of the topology service.

Tablets The Tablet record has a lot of information about each vttablet process making up each tablet (along with the MySQL
process):

o the Tablet Alias (cell+unique id) that uniquely identifies the Tablet.
e the Hostname, IP address and port map of the Tablet.

o the current Tablet type (master, replica, batch, spare, ...).

o which Keyspace / Shard the tablet is part of.

e the sharding Key Range served by this Tablet.

o user-specified tag map (e.g. to store per-installation data).

A Tablet record is created before a tablet can be running (either by vtctl InitTablet or by passing the init_* parameters to
the vttablet process). The only way a Tablet record will be updated is one of:

e The vttablet process itself owns the record while it is running, and can change it.

e At init time, before the tablet starts.

After shutdown, when the tablet gets deleted.

e If a tablet becomes unresponsive, it may be forced to spare to make it unhealthy when it restarts.

Replication graph The Replication Graph allows us to find Tablets in a given Cell / Keyspace / Shard. It used to contain
information about which Tablet is replicating from which other Tablet, but that was too complicated to maintain. Now it is just
a list of Tablets.

Serving graph The Serving Graph is what the clients use to find the per-cell topology of a Keyspace. It is a roll-up of global
data (Keyspace + Shard). vtgates only open a small number of these objects and get all the information they need quickly.

SrvKeyspace It is the local representation of a Keyspace. It contains information on what shard to use for getting to the
data (but not information about each individual shard):

o the partitions map is keyed by the tablet type (master, replica, batch, ...) and the value is a list of shards to use for serving.
it also contains the global Keyspace fields, copied for fast access.

It can be rebuilt by running vtctl RebuildKeyspaceGraph <keyspace>. It is automatically rebuilt when a tablet starts up in
a cell and the SrvKeyspace for that cell / keyspace does not exist yet. It will also be changed during horizontal and vertical
splits.

SrvVSchema It is the local roll-up for the VSchema. It contains the VSchema for all keyspaces in a single object.

It can be rebuilt by running vtctl RebuildVSchemaGraph. It is automatically rebuilt when using vtctl ApplyVSchema (unless
prevented by flags).

76

https://github.com/vitessio/vitess/blob/master/doc/VTGateV3Features.md

Workflows involving the Topology Service

The Topology Service is involved in many Vitess workflows.

When a Tablet is initialized, we create the Tablet record, and add the Tablet to the Replication Graph. If it is the master for a
Shard, we update the global Shard record as well.

Administration tools need to find the tablets for a given Keyspace / Shard. To retrieve this:

o first we get the list of Cells that have Tablets for the Shard (global topology Shard record has these)
o then we use the Replication Graph for that Cell / Keyspace / Shard to find all the tablets then we can read each tablet
record.

When a Shard is reparented, we need to update the global Shard record with the new master alias.

Finding a tablet to serve the data is done in two stages:

o vtgate maintains a health check connection to all possible tablets, and they report which Keyspace / Shard / Tablet type
they serve.
« vtgate also reads the SrvKeyspace object, to find out the shard map.

With these two pieces of information, vtgate can route the query to the right vttablet.

During resharding events, we also change the topology significantly. A horizontal split will change the global Shard records, and
the local SrvKeyspace records. A vertical split will change the global Keyspace records, and the local SrvKeyspace records.

Exploring the data in a Topology Service

We store the proto3 serialized binary data for each object.
We use the following paths for the data, in all implementations:

Global Cell:

e Celllnfo path: cells/<cell name>/CellInfo

o Keyspace: keyspaces/<keyspace>/Keyspace

o Shard: keyspaces/<keyspace>/shards/<shard>/Shard
e VSchema: keyspaces/<keyspace>/VSchema

Local Cell:

o Tablet: tablets/<cell>-<uid>/Tablet

o Replication Graph: keyspaces/<keyspace>/shards/<shard>/ShardReplication
o SrvKeyspace: keyspaces/<keyspace>/SrvKeyspace

e SrvVSchema: SvrVSchema

The vtctl TopoCat utility can decode these files when using the -decode_proto option:
TOPOLOGY="-topo_implementation zk2 -topo_global_server_address
global_serverl,global_server2 -topo_global_root /vitess/global"

$ vtctl $TOPOLOGY TopoCat -decode_proto -long /keyspaces/*/Keyspace
path=/keyspaces/ksl/Keyspace version=53

sharding_column_name: "coll"
path=/keyspaces/ks2/Keyspace version=55
sharding_column_name: "col2"

The vtctld web tool also contains a topology browser (use the Topology tab on the left side). It will display the various proto
files, decoded.

7

Implementations

The Topology Service interfaces are defined in our code in go/vt/topo/, specific implementations are in go/vt/topo/<name>,
and we also have a set of unit tests for it in go/vt/topo/test.

This part describes the implementations we have, and their specific behavior.

If starting from scratch, please use the zk2, etcd2 or consul implementations. We deprecated the old zookeeper and etcd
implementations. See the migration section below if you want to migrate.

Zookeeper zk2 implementation This is the current implementation when using Zookeeper. (The old zookeeper implemen-
tation is deprecated).

The global cell typically has around 5 servers, distributed one in each cell. The local cells typically have 3 or 5 servers, in different
server racks / sub-networks for higher resilience. For our integration tests, we use a single ZK server that serves both global and
local cells.

We provide the zk utility for easy access to the topology data in Zookeeper. It can list, read and write files inside any Zoopeeker
server. Just specify the -server parameter to point to the Zookeeper servers. Note the vtctld Ul can also be used to see the
contents of the topology data.

To configure a Zookeeper installation, let’s start with the global cell service. It is described by the addresses of the servers
(comma separated list), and by the root directory to put the Vitess data in. For instance, assuming we want to use servers
global_serverl,global_server2 in path /vitess/global:

The root directory in the global server will be created
automatically, same as when running this command:
2zk -server global_serverl,global_server2 touch -p /vitess/global

Set the following flags to let Vitess use this global serwver:
-topo_implementation zk2

-topo_global_server_address global_serverl,global_server2
-topo_global_root /vitess/global

H*H H R R

Then to add a cell whose local topology service celll_serverl,celll_server2 will store their data under the directory
/vitess/celll:

TOPOLOGY="-topo_implementation zk2 -topo_global_server_address
global_serverl,global_server2 -topo_global_root /vitess/global"

Reference celll in the global topology service:
vtctl $TOPOLOGY AddCellInfo \
-server_address celll_serverl,celll_server2 \
-root /vitess/celll \
celll

If only one cell is used, the same Zookeeper instance can be used for both global and local data. A local cell record still needs
to be created, just use the same server address, and very importantly a different root directory.

Zookeeper Observers can also be used to limit the load on the global Zookeeper. They are configured by specifying the addresses of
the observers in the server address, after a |, for instance: global_serverl:pl,global_server2:p2|observerl:pol,observer2:po2.

Implementation details We use the following paths for Zookeeper specific data, in addition to the regular files:

e Locks sub-directory: locks/ (for instance: keyspaces/<keyspace>/Keyspace/locks/ for a keyspace)
e Master election path: elections/<name>

Both locks and master election are implemented using ephemeral, sequential files which are stored in their respective directory.

78

https://zookeeper.apache.org/doc/current/zookeeperObservers.html

etcd etcd2 implementation (new version of etcd) This topology service plugin is meant to use etcd clusters as storage
backend for the topology data. This topology service supports version 3 and up of the etcd server.

This implementation is named etcd2 because it supersedes our previous implementation etcd. Note that the storage format has
been changed with the etcd2 implementation, i.e. existing data created by the previous etcd implementation must be migrated
manually (See migration section below).

To configure an etcd2 installation, let’s start with the global cell service. It is described by the addresses of the servers
(comma separated list), and by the root directory to put the Vitess data in. For instance, assuming we want to use servers
http://global_serverl,http://global_server?2 in path /vitess/global:

Set the following flags to let Vitess use this global server,

and simplify the example below:

-topo_implementation etcd2

-topo_global_server_address http://global_serverl,http://global_server2

~topo_global_root /vitess/global

TOPOLOGY="-topo_implementation etcd2 -topo_global_server_address
http://global_serverl ,http://global_server2 -topo_global_root /vitess/global

H W R R

Then to add a cell whose local topology service http://celll_serverl,http://celll_server2 will store their data under the
directory /vitess/celll:

Reference celll in the global topology service:
(the TOPOLOGY wvariable is defined in the previous section)
vtctl $TOPOLOGY AddCellInfo \
-server_address http://celll_serverl,http://celll_server2 \
-root /vitess/celll \
celll

If only one cell is used, the same etcd instances can be used for both global and local data. A local cell record still needs to be
created, just use the same server address and, very importantly, a different root directory.

Implementation details For locks, we use a subdirectory named locks in the directory to lock, and an ephemeral file in
that subdirectory (it is associated with a lease, whose TTL can be set with the —topo_etcd_lease_duration flag, defaults to
30 seconds). The ephemeral file with the lowest ModRevision has the lock, the others wait for files with older ModRevisions to
disappear.

Master elections also use a subdirectory, named after the election Name, and use a similar method as the locks, with ephemeral
files.

We store the proto3 binary data for each object (as the v3 API allows us to store binary data). Note that this means that if you
want to interact with etcd using the etcdctl tool, you will have to tell it to use the v3 API, e.g.:

ETCDCTL_API=3 etcdctl get / --prefix --keys-only

Consul consul implementation This topology service plugin is meant to use Consul clusters as storage backend for the
topology data.

To configure a consul installation, let’s start with the global cell service. It is described by the address of a server, and
by the root node path to put the Vitess data in (it cannot start with /). For instance, assuming we want to use servers
global_server:global_port with node path vitess/global:

Set the following flags to let Vitess use this global server,

and simplify the example below:

-topo_timplementation consul

-topo_global_server_address global_server:global_port

-topo_global_root wvitess/global

TOPOLOGY="-topo_implementation consul -topo_global_server_address global_server:global_port
-topo_global_root vitess/global

H R R R R

79

Then to add a cell whose local topology service celll_serverl:celll_port will store their data under the directory
vitess/celll:

Reference celll in the global topology service:
(the TOPOLOGY wvariable is defined in the previous section)
vtctl $TOPOLOGY AddCellInfo \

-server_address celll_serverl:celll_port \

-root vitess/celll \

celll

If only one cell is used, the same consul instances can be used for both global and local data. A local cell record still needs to
be created, just use the same server address and, very importantly, a different root node path.

Implementation details For locks, we use a file named Lock in the directory to lock, and the regular Consul Lock API.

Master elections use a single lock file (the Election path) and the regular Consul Lock API. The contents of the lock file is the
ID of the current master.

Watches use the Consul long polling Get call. They cannot be interrupted, so we use a long poll whose duration is set by
the -topo_consul_watch_poll_duration flag. Canceling a watch may have to wait until the end of a polling cycle with that
duration before returning.

Running in only one cell

The topology service is meant to be distributed across multiple cells, and survive single cell outages. However, one common
usage is to run a Vitess cluster in only one cell / region. This part explains how to do this, and later on upgrade to multiple
cells / regions.

If running in a single cell, the same topology service can be used for both global and local data. A local cell record still needs
to be created, just use the same server address and, very importantly, a different root node path.

In that case, just running 3 servers for topology service quorum is probably sufficient. For instance, 3 etcd servers. And use
their address for the local cell as well. Let’s use a short cell name, like local, as the local data in that topology service will later
on be moved to a different topology service, which will have the real cell name.

Extending to more cells To then run in multiple cells, the current topology service needs to be split into a global instance
and one local instance per cell. Whereas, the initial setup had 3 topology servers (used for global and local data), we recommend
to run 5 global servers across all cells (for global topology data) and 3 local servers per cell (for per-cell topology data).

To migrate to such a setup, start by adding the 3 local servers in the second cell and run vtctl AddCellinfo as was done for
the first cell. Tablets and vtgates can now be started in the second cell, and used normally.

vtgate can then be configured with a list of cells to watch for tablets using the —~cells_to_watch command line parameter. It
can then use all tablets in all cells to route traffic. Note this is necessary to access the master in another cell.

After the extension to two cells, the original topo service contains both the global topology data, and the first cell topology data.
The more symmetrical configuration we are after would be to split that original service into two: a global one that only contains
the global data (spread across both cells), and a local one to the original cells. To achieve that split:

o Start up a new local topology service in that original cell (3 more local servers in that cell).

e Pick a name for that cell, different from local.

e Use vtctl AddCelllInfo to configure it.

o Make sure all vtgates can see that new local cell (again, using -cells_to_watch).

o Restart all vttablets to be in that new cell, instead of the local cell name used before.

e Use vtctl RemoveKeyspaceCell to remove all mentions of the local cell in all keyspaces.

e Use vtctl RemoveCellInfo to remove the global configurations for that local cell.

e Remove all remaining data in the global topology service that are in the old local server root.

After this split, the configuration is completely symmetrical:

80

« a global topology service, with servers in all cells. Only contains global topology data about Keyspaces, Shards and
VSchema. Typically it has 5 servers across all cells.

e a local topology service to each cell, with servers only in that cell. Only contains local topology data about Tablets, and
roll-ups of global data for efficient access. Typically, it has 3 servers in each cell.

Migration between implementations

We provide the topo2topo utility to migrate between one implementation and another of the topology service.

The process to follow in that case is:

e Start from a stable topology, where no resharding or reparenting is ongoing.

o Configure the new topology service so it has at least all the cells of the source topology service. Make sure it is running.
e Run the topo2topo program with the right flags. -from_implementation, ~-from_root, -from_server describe the source
(old) topology service. —to_implementation, -to_root, —to_server describe the destination (new) topology service.

e Run vtctl RebuildKeyspaceGraph for each keyspace using the new topology service flags.

e Run vtctl RebuildVSchemaGraph using the new topology service flags.

o Restart all vtgate processes using the new topology service flags. They will see the same Keyspaces / Shards / Tablets /
VSchema as before, as the topology was copied over.

e Restart all vttablet processes using the new topology service flags. They may use the same ports or not, but they will
update the new topology when they start up, and be visible from vtgate.

e Restart all vtctld processes using the new topology service flags. So that the UI also shows the new data.

Sample commands to migrate from deprecated zookeeper to zk2 topology would be:

The new 2zk2 implementation can use any root, so we will wuse:
/vitess/global in the global topology seruvice, and:
/vitess/celll in the local topology service.

Let's assume the zookeeper client config file is already

exported in $ZK_CLIENT_CONFIG, and it contains a global record
pointing to: global_serverl,global_server2

an a local cell celll pointing to celll_serverl,celll_server2
#

The exzisting directories created by Vitess are:

/zk/global/vt/. ..

/zk/celll/vt/. ..

#

#

#

#

Create the new topology service Toots in global and local cell.
zk -server global_serverl,global_server2 touch -p /vitess/global
zk -server celll_serverl,celll _server2 touch -p /vitess/celll

Store the flags in a shell wvariable to simplify the exzample below.
TOPOLOGY="-topo_implementation zk2 -topo_global_server_address
global_serverl,global_server2 -topo_global_root /vitess/global"

Reference celll in the global topology service:
vtctl $TOPOLOGY AddCellInfo \
-server_address celll _serverl,celll_server2 \
-root /vitess/celll \
celll

Now copy the topology. Note the old zookeeper implementation does not need
any server or root parameter, as it reads ZK_CLIENT_CONFIG.
topo2topo \

-from_implementation zookeeper \

81

-to_implementation zk2 \
-to_server global_serverl,global_server2 \
-to_root /vitess/global \

Rebuild SvrKeyspace objects in new service, for each keyspace.
vtctl $TOPOLOGY RebuildKeyspaceGraph keyspacel
vtctl $TOPOLOGY RebuildKeyspaceGraph keyspace2

Rebuild SrvVSchema objects in new service.
vtctl $TOPOLOGY RebuildVSchemaGraph

Now restart all wvtgate, wttablet, wvtctld processes replacing:
-topo_timplementation zookeeper

With:

-topo_timplementation 2zk2

-topo_global_server_address global_serverl,global_server2
-topo_global_root /vitess/global

After this, the ZK_CLIENT CONF file and environment wvariables are not needed
any more.

oW R R R R R R W

Migration using the Tee implementation If your migration is more complex, or has special requirements, we also support
a ‘tee’ implementation of the topo service interface. It is defined in go/vt/topo/helpers/tee.go. It allows communicating to
two topo services, and the migration uses multiple phases:

e Start with the old topo service implementation we want to replace.

e Bring up the new topo service, with the same cells.

e Use topo2topo to copy the current data from the old to the new topo.
e Configure a Tee topo implementation to maintain both services.

— Note we do not expose a plugin for this, so a small code change is necessary.

— all updates will go to both services.

— the primary topo service is the one we will get errors from, if any.

— the secondary topo service is just kept in sync.

— at first, use the old topo service as primary, and the new one as secondary.

— then, change the configuration to use the new one as primary, and the old one as secondary. Reverse the lock order
here.

— then rollout a configuration to just use the new service.

Transport Security Model
Vitess exposes a few RPC services and internally uses RPCs. These RPCs can optionally utilize secure transport options to use

TLS over the gRPC HTTP/2 transport protocol. This document explains how to use these features. Finally, we briefly cover
how to secure the MySQL protocol transport to VI Gate.

Overview

The following diagram represents all the RPCs we use in a Vitess cluster via gRPC:
There are two main categories:
e Internal RPCs: They are used to connect Vitess components.
o Externally visible RPCs: They are used by the app to talk to Vitess. Note that it is not necessary to use this gRPC
interface. It is still possible to instead use the MySQL protocol to VT Gate, which is not covered in this document.

A few features in the Vitess ecosystem depend on authentication including Caller ID and table ACLs.

82

App Vitess

Web Browser vtcld

vtctlservice

Automation client /

vtctlclient tabletmanager

Client vtgateservice——— VTGate —queryservice
Effective Caller ID ------ ~ Immediate Caller ID

VTTablet

binlogstreamer

VTTablet

Figure 3: Vitess Transport Security Model Diagram

Caller ID

Caller ID is a feature provided by the Vitess stack to identify the source of queries. There are two different Caller IDs:

e Immediate Caller ID: It represents the secure client identity when it enters the Vitess side:

— It is a single string representing the user connecting to Vitess (VT Gate).
— It is authenticated by the transport layer used.
— It can be used by the Vitess TableACL feature.

o Effective Caller ID: It provides detailed information on the individual caller process:

— It contains more information about the caller: principal, component, and sub-component.

— It is provided by the application layer.

— It is not authenticated.

— It is exposed in query logs. Enabling it can be useful for debugging issues like the source of a slow query.

gRPC Transport

gRPC Encrypted Transport When using gRPC transport, Vitess can use the usual TLS security features. Please note that
familiarity with TLS is necessary here:

e Any Vitess server can be configured to use TLS with the following command line parameters:

— grpc_cert, grpc_key: server cert and key to use.
— grpc_ca (optional): client cert chains to trust. If specified, the client must then use a certificate signed by one of the
CA certs in the provided file.

e A Vitess go client can be configured with symmetrical parameters to enable TLS:

83

— xxxx_grpc_ca: list of server cert signers to trust. I.E. the client will only connect to servers presenting a cert signed
by one of the CAs in this file.

— xxxX_grpc_server_name: common name of the server cert to trust. Instead of the hostname used to connect or IP
SAN if using an IP to connect.

— xxxX_grpc_cert, xxxx_grpc_key: client side cert and key to use in cases when the server requires client authentica-
tion.

— Other clients can take similar parameters, in various ways. Please view each client’s parameters for more information.

With these options, it is possible to use TLS-secured connections for all parts of the gRPC system. This enables the server side
to authenticate the client, and/or the client to authenticate the server.

This is not enabled by default, as usually the different Vitess servers will run on a private network. It is also important to note,
that in a Cloud environment, for example, usually all local traffic is already secured between VMs.

Options for vtctld

Name Type Definition

-tablet__grpc_ ca string the server ca to use to validate servers
when connecting

-tablet_ grpc_ cert string the cert to use to connect

-tablet__grpc_ key string the key to use to connect

-tablet_ grpc_server name string the server name to use to validate
server certificate

-tablet__manager grpc_ca string the server ca to use to validate servers
when connecting

-tablet_ manager grpc_cert string the cert to use to connect

-tablet__manager grpc_ key string the key to use to connect

- string the server name to use to validate

tablet__ manager_ grpc_ server_name server certificate

-throttler_ client_ grpc_ ca string the server ca to use to validate servers
when connecting

-throttler_ client_ grpc_ cert string the cert to use to connect

-throttler_ client_ grpc_ key string the key to use to connect

- string the server name to use to validate

throttler_ client_ grpc_server name server certificate

-vtgate_grpc_ ca string the server ca to use to validate servers
when connecting

-vtgate grpc_ cert string the cert to use to connect

-vtgate_ grpc_ key string the key to use to connect

-vtgate_grpc_server_name string the server name to use to validate
server certificate

-vtworker_ client_ grpc_ ca string the server ca to use to validate servers
when connecting

-vtworker_ client_ grpc_ cert string the cert to use to connect

-vtworker_ client_ grpc_ key string the key to use to connect

- string the server name to use to validate

vtworker_ client_ grpc_server_name server certificate

Options for vtgate

Name Type Definition

-tablet_ grpc_ ca string the server ca to use to validate servers
when connecting

-tablet_ grpc_ cert string the cert to use to connect

84

Name Type Definition

-tablet__grpc_ key string the key to use to connect
-tablet__grpc_ server_name string the server name to use to validate
server certificate

Options for vttablet

Name Type Definition

-binlog_player_grpc_ca string the server ca to use to validate servers
when connecting

-binlog_ player_ grpc_ cert string the cert to use to connect

-binlog_ player_ grpc_ key string the key to use to connect

-binlog_ player_grpc_server_name string the server name to use to validate
server certificate

-tablet_ grpc_ ca string the server ca to use to validate servers
when connecting

-tablet__grpc_ cert string the cert to use to connect

-tablet_ grpc_ key string the key to use to connect

-tablet_ grpc_ server_name string the server name to use to validate
server certificate

-tablet__manager grpc_ ca string the server ca to use to validate servers
when connecting

-tablet__manager_grpc_ cert string the cert to use to connect

-tablet__manager grpc_key string the key to use to connect

- string the server name to use to validate

tablet_ manager grpc_server name server certificate

Certificates and Caller ID Additionally, if a client uses a certificate to connect to Vitess (VT Gate) via gRPC, the common
name of that certificate is passed to vttablet as the Immediate Caller ID. It can then be used by table ACLs to grant read, write
or admin access to individual tables. This should be used if different clients should have different access to Vitess tables.

Caller ID Override In a private network, where TLS security is not required, it might still be desirable to use ta-
ble ACLs as a safety mechanism to prevent a user from accessing sensitive data. The gRPC connector provides the
grpc_use_effective_callerid flag for this purpose: if specified when running vtgate, the Effective Caller ID’s principal is
copied into the Immediate Caller ID, and then used throughout the Vitess stack.

Important: This is not secure. Any user code can provide any value for the Effective Caller ID’s principal, and therefore access
any data. This is intended as a safety feature to make sure some applications do not misbehave. Therefore, this flag is not
enabled by default.

Example For a concrete example, see encrypted_ transport_ test.go in the source tree.

It first sets up all the certificates, some table ACLs, and then uses the golang client to connect with TLS. It also exercises the
grpc_use_effective_callerid flag, by connecting without TLS.

MySQL Transport to VI Gate

To get VT'Gate to support TLS use the -mysql_server_ssl_cert and -mysql_server_ssl_key VTGate options. To require
client certificates, you can set -mysql_server_ssl_ca, containing the CA certificate you expect the client TLS certificates to
be verified against.

Finally, if you want to require all VT'Gate clients to only be able to connect using TLS, you can use the -mysql_server_require_secure_
flag.

85

https://github.com/vitessio/vitess/blob/master/go/test/endtoend/encryption/encryptedtransport/encrypted_transport_test.go

Two-Phase Commit

{{< warning >}} Transaction commit is much slower when using 2PC. The authors of Vitess recommend that you design your
VSchema so that cross-shard updates (and 2PC) are not required. {{< /warning >}}

Vitess 2PC allows you to perform atomic distributed commits. The feature is implemented using traditional MySQL transactions,
and hence inherits the same guarantees. With this addition, Vitess can be configured to support the following three levels of
atomicity:

1. Single database: At this level, only single database transactions are allowed. Any transaction that tries to go beyond a
single database will fail.

2. Multi database: A transaction can span multiple databases, but the commit will be best effort. Partial commits are
possible.

3. 2PC: This is the same as Multi-database, but the commit will be atomic.

2PC commits are more expensive than multi-database because the system has to save away the statements before starting the
commit process, and also clean them up after a successful commit. This is the reason why it is a separate option instead of being
always on.

Isolation

2PC transactions guarantee atomicity: either the whole transaction commits, or it is rolled back entirely. It does not guarantee
Isolation (in the ACID sense). This means that a third party that performs cross-database reads can observe partial commits
while a 2PC transaction is in progress.

Guaranteeing ACID Isolation is very contentious and has high costs. Providing it by default would have made Vitess impractical
for the most common use cases.

Configuring VIT'Gate The atomicity policy is controlled by the transaction_mode flag. The default value is multi, and will
set it in multi-database mode. This is the same as the previous legacy behavior.

To enforce single-database transactions, the VT Gates can be started by specifying transaction_mode=single.

To enable 2PC, the VT Gates need to be started with transaction_mode=twopc. The VTTablets will require additional flags,
which will be explained below.

The VT Gate transaction_mode flag decides what to allow. The application can independently request a specific atomicity for
each transaction. The request will be honored by VT Gate only if it does not exceed what is allowed by the transaction_mode.
For example, transaction_mode=single will only allow single-db transactions. On the other hand, transaction_mode=twopc
will allow all three levels of atomicity.

Driver APIs

The way to request atomicity from the application is driver-specific.

MySQL Protocol Clients can set the transaction mode via a session-variable:

set transaction_mode='twopc';

gRPC Clients

Go driver For the Go driver, you request the atomicity by adding it to the context using the WithAtomicity function. For
more details, please refer to the respective GoDocs.

86

Python driver For Python, the begin function of the cursor has an optional single db flag. If the flag is True, then the
request is for a single-db transaction. If False (or unspecified), then the following commit call’s twopc flag decides if the commit
is 2PC or Best Effort (multi).

Adding support in a new driver The VTGate RPC API extends the Begin and Commit functions to specify atomicity.
The API mimics the Python driver: The BeginRequest message provides a single_ db flag and the CommitRequest message
provides an atomic flag which is synonymous to twopc.

Configuring VTTablet

The following flags need to be set to enable 2PC support in VT Tablet:

e twopc__enable: This flag needs to be turned on.

o twopc__coordinator__address: This should specify the address (or VIP) of the VT Gate that VTTablet will use to
resolve abandoned transactions.

e twopc__abandon_ age: This is the time in seconds that specifies how long to wait before asking a VT Gate to resolve an
abandoned transaction.

With the above flags specified, every master VT Tablet also turns into a watchdog. If any 2PC transaction is left lingering
for longer than twopc_abandon_ age seconds, then VTTablet invokes VTGate and requests it to resolve it. Typically, the
abandon__age needs to be substantially longer than the time it takes for a typical 2PC commit to complete (10s of seconds).

Configuring MySQL

The usual default values of MySQL are sufficient. However, it is important to verify that the wait_timeout (28800) has not
been changed. If this value was changed to be too short, then MySQL could prematurely kill a prepared transaction causing
data loss.

Monitoring

A few additional variables have been added to /debug/vars. Failures described below should be rare. But these variables are
present so you can build an alert mechanism if anything were to go wrong.

Critical failures

The following errors are not expected to happen. If they do, it means that 2PC transactions have failed to commit atomically:

e InternalErrors. TwopcCommit: This is a counter that shows the number of times a prepared transaction failed to fulfil
a commit request.

e InternalErrors.TwopcResurrection: This counter is incremented if a new master failed to resurrect a previously
prepared (and unresolved) transaction.

Alertable failures

The following failures are not urgent, but require investigation:

e InternalErrors.WatchdogFail: This counter is incremented if there are failures in the watchdog thread of VTTablet.
This means that the watchdog is not able to alert VT Gate of abandoned transactions.

e Unresolved.Prepares: This is a gauge that is set based on the number of lingering Prepared transactions that have
been alive for longer than 5x the abandon age. This usually means that a distributed transaction has repeatedly failed to
resolve. A more serious condition is when the metadata for a distributed transaction has been lost and this Prepare is now
permanently orphaned.

87

Repairs

If any of the alerts fire, it is time to investigate. Once you identify the dtid or the VT Tablet that originated the alert, you can
navigate to the /twopcz URL. This will display three lists:

o Failed Transactions: A transaction reaches this state if it failed to commit. The only action allowed for such transactions
is that you can discard it. However, you can record the DMLs that were involved and have someone come up with a plan
to repair the partial commit.

e Prepared Transactions: Prepared transactions can be rolled back or committed. Prepared transactions must be remedied
only if their root Distributed Transaction has been lost or resolved.

o Distributed Transactions: Distributed transactions can only be Concluded (marked as resolved).

Vindexes
A Vindex maps column values to keyspace IDs

A Vindex provides a way to map a column value to a keyspace ID. Since each shard in Vitess covers a range of keyspace ID
values, this mapping can be used to identify which shard contains a row. A variety of vindexes are available to choose from with
different trade-offs, and you can choose one that best suits your needs.

The Sharding Key is a concept that was introduced by NoSQL datastores. It is based on the fact that, in NoSQL databases,
there is only one access path to the data, which is the Key. However, relational databases are more versatile with respect to the
data stored and their relationships. So, sharding a database by only designating a single sharding key is often insufficient.

If one were to draw an analogy, the indexes in a database would be the equivalent of the key in a NoSQL datastore, except that
databases allow multiple indexes per table, and there are many types of indexes. Extending this analogy to a sharded database
results in different types of cross-shard indexes. In Vitess, these are called Vindexes.

Advantages

The advantages of Vindexes stem from their flexibility:

A table can have multiple Vindexes.

Vindexes can be NonUnique, which allows a column value to yield multiple keyspace IDs.

Vindexes can be a simple function or be based on a lookup table.

Vindexes can be shared across multiple tables.

Custom Vindexes can be created and used, and Vitess will still know how to reshard using such Vindexes.

The Primary Vindex The Primary Vindex for a table is analogous to a database primary key. Every sharded table must
have one defined. A Primary Vindex must be unique: given an input value, it must produce a single keyspace ID. At the time
of an insert to the table, the unique mapping produced by the Primary Vindex determines the target shard for the inserted row.
Conceptually, this is equivalent to a NoSQL Sharding Key, and we often informally refer to the Primary Vindex as the Sharding
Key.

However, there is a subtle difference: NoSQL datastores allow a choice of the Sharding Key, but the Sharding Strategy or
Function is generally hardcoded in the engine. In Vitess, the choice of Vindex allows control of how a column value maps to
a keyspace ID. In other words, a Primary Vindex in Vitess not only defines the Sharding Key, but also decides the Sharding
Strategy.

Uniqueness for a Primary Vindex does not mean that the column has to be a primary key or unique key in the MySQL schema
for the underlying shard. You can have multiple rows that map to the same keyspace ID. The Vindex uniqueness constraint only
ensures that all rows for a keyspace ID end up in the same shard.

Vindexes come in many varieties. Some of them can be used as Primary Vindex, and others have different purposes. We will
describe their properties in the Predefined Vindexes section.

88

Secondary Vindexes Secondary Vindexes are additional vindexes against other columns of a table offering optimizations for
WHERE clauses that do not use the Primary Vindex. Secondary Vindexes return a single or a limited set of keyspace IDs
which will allow VTGate to only target shards where the relevant data is present. In the absence of a Secondary Vindex, VT Gate
would have to send the query to all shards (called a scatter query).

It is important to note that Secondary Vindexes are only used for making routing decisions. The underlying database shards will
most likely need traditional indexes on those same columns, to allow efficient retrieval from the table on the underlying MySQL
instances.

Unique and NonUnique Vindex A Unique Vindex is a vindex that yields at most one keyspace ID for a given input.
Knowing that a Vindex is Unique is useful because VT Gate can push down certain complex queries into VT Tablet if it knows
that the scope of that query can be limited to a single shard. Uniqueness is also a prerequisite for a Vindex to be used as Primary
Vindex.

A NonUnique Vindex is analogous to a database non-unique index. It is a secondary index for searching by an alternate WHERE
clause. An input value could yield multiple keyspace IDs, and rows could be matched from multiple shards. For example, if a
table has a name column that allows duplicates, you can define a cross-shard NonUnique Vindex for it, and this will allow an
efficient search for users that match a certain name.

Functional and Lookup Vindex A Functional Vindex is a vindex where the column value to keyspace ID mapping is
pre-established, typically through an algorithmic function. In contrast, a Lookup Vindex is a vindex that provides the ability
to create an association between a value and a keyspace ID, and recall it later when needed. Lookup Vindexes are sometimes
also informally referred to as cross-shard indexes.

Typically, the Primary Vindex for a table is Functional. In some cases, it is the identity function where the input value yields
itself as the keyspace id. However, other algorithms like a hashing function can also be used.

A Lookup Vindex is implemented as a MySQL lookup table that maps a column value to the keyspace id. This is usually needed
when database user needs to efficiently find a row using a WHERE clause that does not contain the Primary Vindex. At the
time of insert, the computed keyspace ID of the row is stored in the lookup table against the column value.

Lookup Vindex types The lookup table that implements a Lookup Vindex can be sharded or unsharded. Note that the
lookup row is most likely not going to be in the same shard as the keyspace id it points to.

Vitess allows for the transparent population of these lookup table rows by assigning an owner table, which is the main table
that requires this lookup. When a row is inserted into this owner table, the lookup row for it is created in the lookup table.
The lookup row is also deleted upon a delete of the corresponding row in the owner table. These essentially result in distributed
transactions, which traditionally require 2PC to guarantee atomicity.

Consistent lookup vindexes use an alternate approach that makes use of careful locking and transaction sequences to guarantee
consistency without using 2PC. This gives the best of both worlds, with the benefit of a consistent cross-shard vindex without
paying the price of 2PC.

There are currently two vindex types in Vitess for consistent lookup: * consistent_lookup_unique * consistent_lookup

Shared Vindexes Relational databases encourage normalization, which allows the splitting of data into different tables to
avoid duplication in the case of one-to-many relationships. In such cases, a key is shared between the two tables to indicate that
the rows are related, a.k.a. Foreign Key.

In a sharded environment, it is often beneficial to keep those rows in the same shard. If a Lookup Vindex was created on the
foreign key column of each of those tables, the backing tables would actually be identical. In such cases, Vitess allows sharing a
single Lookup Vindex for multiple tables. One of these tables is designated as the owner of the Lookup Vindex, and is responsible
for creating and deleting these associations. The other tables just reuse these associations.

An existing lookup_unique vindex can be trivially switched to a consistent_lookup_unique by changing the vindex type in
the VSchema. This is because the data is compatible. Caveat: If you delete a row from the owner table, Vitess will not perform
cascading deletes. This is mainly for efficiency reasons; the application is likely capable of doing this more efficiently.

89

As for a lookup vindex, it can be changed it to a consistent_lookup only if the from columns can uniquely identify the owner
row. Without this, many potentially valid inserts would fail.

Functional Vindexes can be also be shared. However, there is no concept of ownership because the column to keyspace ID
mapping is pre-established.

Lookup Vindex guidance The guidance for implementing lookup vindexes has been to create a two-column table. The first
column (from column) should match the type of the column of the main table that needs the vindex. The second column (to
column) should be a BINARY or a VARBINARY large enough to accommodate the keyspace id.

This guidance remains the same for unique lookup vindexes.

For non-unique lookup Vindexes, the lookup table should consist of multiple columns. The first column continues to be the
input for computing the keyspace IDs. Beyond this, additional columns are needed to uniquely identify the owner row. This
should typically be the primary key of the owner table. But it can be any other column that can be combined with the from
column to uniquely identify the owner row. The last column remains the keyspace ID like before.

For example, if a user table had the columns (user_id, email), where user_id was the primary key and email needed a
non-unique lookup vindex, the lookup table would have the columns (email, user_id, keyspace_id).

Indepedence The previously described properties are mostly independent of each other. Combining them gives rise to the
following valid categories:

e Functional Unique: The most popular category because it is the one best suited to be a Primary Vindex.

e Functional NonUnique: There are currently no use cases that need this category.

e Lookup Unique Owned: Used for optimizing high QPS read queries that do not use the Primary Vindex columns in
their WHERE clause. There is a price to pay: an extra write to the lookup table for insert and delete operations, and an
extra lookup for read operations. However, it may be worth it to avoid high QPS read queries to be sent to all shards.
The overheard of maintaining the lookup table is amortized as the number of shards grow.

e Lookup Unique Unowned: Can be used as an optimization as described in the Shared Vindexes section.

e Lookup NonUnique Owned: Used for high QPS queries on columns that are non-unique.

e Lookup NonUnique Unowned: You would rarely have to use this category because it is unlikely that you will be using
a column as foreign key that is not unique within a shard. But it is theoretically possible.

Of the above categories, Functional Unique and Lookup Unique Unowned Vindexes can be a Primary Vindex. This is because
those are the only ones that are unique and have the column to keyspace ID mapping pre-established. This is required because
the Primary Vindex is responsible for assigning the keyspace ID for a row when it is created.

However, it is generally not recommended to use a Lookup Vindex as a Primary Vindex because it is too slow for resharding.
If absolutely unavoidable, it is recommended to add a keyspace ID column to the tables that need this level of control of the
row-to-shard mapping. While resharding, Vitess can use that column to efficiently compute the target shard. Vitess can also be
configured to auto-populate that column on inserts. This is done using the reverse map feature explained below.

How Vindexes are used

Cost Vindexes have costs. For routing a query, the applicable Vindex with the lowest cost is chosen. The current general costs
for the different Vindex Types are as follows:

Vindex Type Cost
Identity 0
Functional 1
Lookup Unique 10

Lookup NonUnique 20

90

Select In the case of a simple select, Vitess scans the WHERE clause to match references to Vindex columns and chooses the
best one to use. If there is no match and the query is simple without complex constructs like aggregates, etc., it is sent to all
shards.

Vitess can handle more complex queries. For now, refer to the design doc for background information on how it handles them.

Insert

e The Primary Vindex is used to generate a keyspace ID.

e The keyspace ID is validated against the rest of the Vindexes on the table. There must exist a mapping from the column
value(s) for these Secondary Vindexes to the keyspace ID.

e If a column value was not provided for a Vindex and the Vindex is capable of reverse mapping a keyspace ID to an input
value, that function is used to auto-fill the column. If there is no reverse map, it is an error.

Update The WHERE clause is used to route the update. Updating the value of a Vindex column is supported, but with a
restriction: the change in the column value should not result in the row being moved from one shard to another. A workaround
is to perform a delete followed by insert, which works as expected.

Delete If the table owns lookup vindexes, then the rows to be deleted are first read and the associated Vindex entries are
deleted. Following this, the query is routed according to the WHERE clause.

Predefined Vindexes Vitess provides the following predefined Vindexes:

Name Type Description Primary Reversible Cost Data types
binary Functionalldentity Yes Yes 0 Any
Unique
binary_mdmnctionalMD5 hash Yes No 1 Any
Unique
consistent Llookup Lookup table No No 20 Any
NonUniquaeon-unique values
consistent Livokmp unighap table unique If unowned No 10 Any
Unique values
hash FunctionalDES null-key hash Yes Yes 1 64 bit or smaller
Unique numeric or
equivalent type
lookup Lookup Lookup table No No 20 Any
NonUniquaon-unique values
lookup_ udigokup Lookup table unique If unowned No 10 Any
Unique values
null FunctionalAlways map to Yes No 100 Any
Unique keyspace ID 0
numeric Functionalldentity Yes Yes 0 64 bit or smaller
Unique numeric or
equivalent type
numeric__skatictiomsp) SON file statically Yes No 1 Any

Unique mapping input string
values to keyspace IDs
region__exjperieténhalMulti-column Yes No 1 String and numeric
Unique prefix-based hash for type
use in geo-partitioning

91

https://github.com/vitessio/vitess/blob/master/doc/V3HighLevelDesign.md

Name Type Description Primary Reversible Cost Data types
region__jsoRunctionalMulti-column Yes No 1 String and numeric
Unique prefix-based hash type
combined with a
JSON map for
key-to-region
mapping, for use in
geo-partitioning
reverse_biksinctionalBit reversal Yes Yes 1 64 bit or smaller
Unique numeric or
equivalent type
unicode_ ldtsectiod5lCase-insensitive (UCA Yes No 1 String or binary
Unique level 1) MD5 hash types
unicode_ ldomectiotm€lnse-insensitive (UCA Yes No 1 String or binary
Unique level 1) xxHash64 hash types
xxhash FunctionalkxHash64 hash Yes No Any

Unique

There are also the following legacy (deprecated) Vindexes. Do not use these:

Consistent lookup vindexes, as described above, are a new category of Vindexes that are meant to replace the existing lookup
Vindexes implementation. For the time being, they have a different name to allow for users to switch back and forth.

Custom Vindexes can also be created as needed. At the moment there is no formal plugin system for custom Vindexes, but the
interface is well-defined, and thus custom implementations including code performing arbitary lookups in other systems can be
accomodated.

Name Type Primary Reversible Cost
lookup__hash Lookup NonUnique No No 20
lookup__hash_unique Lookup Unique If unowned No 10
lookup_ unicodeloosemd5__hash Lookup NonUnique No No 20
lookup__unicodeloosemdb__hash_ unique Lookup Unique If unowned No 10

Sequences

Motivation

Vitess Sequences fill that gap:

This document describes the Vitess Sequences feature, and how to use it.

MySQL provides the auto-increment feature to assign monotonically incrementing IDs to a column in a table. However, when
a table is sharded across multiple instances, maintaining the same feature is a lot more tricky.

o Inspired from the usual SQL sequences (implemented in different ways by Oracle, SQL Server and PostgreSQL).

e Very high throughput for ID creation, using a configurable in-memory block allocation.

o Transparent use, similar to MySQL auto-increment: when the field is omitted in an insert statement, the next sequence

value is used.

92

When not to Use Auto-Increment

Before we go any further, an auto-increment column has limitations and drawbacks. let’s explore this topic a bit here.

Security Considerations Using auto-increment can leak confidential information about a service. Let’s take the example of
a web site that store user information, and assign user IDs to its users as they sign in. The user ID is then passed in a cookie
for all subsequent requests.

The client then knows their own user ID. It is now possible to:

e Try other user IDs and expose potential system vulnerabilities.
o Get an approximate number of users of the system (using the user ID).

o Get an approximate number of sign-ins during a week (creating two accounts a week apart, and diffing the two IDs).

Auto-incrementing IDs should be reserved for either internal applications, or exposed to the clients only when safe.

Alternatives Alternative to auto-incrementing IDs are:
o use a 64 bits random generator number. Try to insert a new row with that ID. If taken (because the statement returns an
integrity error), try another ID.

e use a UUID scheme, and generate truely unique IDs.

Now that this is out of the way, let’s get to MySQL auto-increment.

MySQL Auto-increment Feature

Let’s start by looking at the MySQL auto-increment feature:

e A row that has no value for the auto-increment value will be given the next ID.

e The current value is stored in the table metadata.

o Values may be ‘burned’ (by rolled back transactions).

e Inserting a row with a given value that is higher than the current value will set the current value.

e The value used by the master in a statement is sent in the replication stream, so replicas will have the same value when
re-playing the stream.

e There is no strict guarantee about ordering: two concurrent statements may have their commit time in one order, but their
auto-incrementing ID in the opposite order (as the value for the ID is reserved when the statement is issued, not when the
transaction is committed).

o MySQL has multiple options for auto-increment, like only using every N number (for multi-master configurations), or
performance related features (locking that table’s current ID may have concurrency implications).

e When inserting a row in a table with an auto-increment column, if the value for the auto-increment row is not set, the
value for the column is returned to the client alongside the statement result.

93

Vitess Sequences
An early design was to use a single unsharded database and a table with an auto-increment value to generate new values.
However, this has serious limitations, in particular throughtput, and storing one entry for each value in that table, for no reason.

So we decided instead to base sequences on a MySQL table, and use a single value in that table to describe which values the
sequence should have next. To increase performance, we also support block allocation of IDs: each update to the MySQL table

is only done every N IDs (N being configurable), and in between only memory structures in vttablet are updated, making the
QPS only limited by RPC latency.

The sequence table then is an unsharded single row table that Vitess can use to generate monotonically increasing ids. The
VSchema allows you to associate a column of a table with the sequence table. Once they are associated, an insert on that table
will transparently fetch an id from the sequence table, fill in the value, and route the row to the appropriate shard.

Since sequences are unsharded tables, they will be stored in the database (in our tutorial example, this is the commerce database).
The final goal is to have Sequences supported with SQL statements, like:

/% DDL support */
CREATE SEQUENCE my_sequence;

SELECT NEXT VALUE FROM my_sequence;
ALTER SEQUENCE my_sequence ...;
DROP SEQUENCE my_sequence;

SHOW CREATE SEQUENCE my_sequence;

In the current implementation, we support the query access to Sequences, but not the administration commands yet.

Creating a Sequence Note: The names in this section are extracted from the examples/demo sample application.

To create a Sequence, a backing table must first be created and initialized with a single row. The columns for that table have
to be respected.

This is an example:

create table user_seq(id int, next_id bigint, cache bigint, primary key(id)) comment
'vitess_sequence';

insert into user_seq(id, next_id, cache) values(0, 1, 100);

Then, the Sequence has to be defined in the VSchema for that keyspace:

{
"sharded": false,
"tables": {
"user_seq": {
"type": "sequence"
X,
3
}

And the table it is going to be using it can also reference the Sequence in its VSchema:

{

"tables" : {
"user": {

94

"column_vindexes": [

s

"auto_increment": {
"column": "user_id",
"sequence": "user_seq"

}

X,

After this done (and the Schema has been reloaded on master tablet, and the VSchema has been pushed), the sequence can be

used.

Accessing a Sequence If a Sequence is used to fill in a column for a table, nothing further needs to be done. Just sending
no value for the column will make vtgate insert the next Sequence value in its place.

It is also possible to access the Sequence directly with the following SQL constructs:

/* Returns the next wvalue for the sequence */
select next value from my_sequence;

/% Returns the next wvalue for the sequence, and also reserve 4 values after that. */
select next 5 values from my_sequence;

VReplication

VReplication is a core component of Vitess that can be used to compose many features. It can be used for the following use

cases:

Resharding: Legacy workflows of vertical and horizontal resharding. New workflows of resharding from an unsharded to
a sharded keyspace and vice-versa. Resharding from an unsharded to an unsharded keyspace using a different vindex than
the source keyspace.

Materialized Views: You can specify a materialization rule that creates a view of the source table into a target keyspace.
This materialization can use a different primary vindex than the source. It can also materialize a subset of the source
columns, or add new expressions from the source. This view will be kept up-to-date in real time. One can also materialize
reference tables onto all shards and have Vitess perform efficient local joins with those materialized tables.

Realtime rollups: The materialization expression can include aggregation expressions in which case, Vitess will create a
rolled up version of the source table which can be used for realtime analytics.

Backfilling lookup vindexes: VReplication can be used to backfill a newly created lookup vindex. Workflows can be
built to manage the switching from a backfill mode to the vindex itself keeping it up-to-date.

Schema deployment: We can use VReplication to recreate the workflow performed by gh-ost and thereby support
zero-downtime schema deployments in Vitess natively.

Data migration: VReplication can be setup to migrate data from an existing system into Vitess. The replication could
also be reversed after a cutover giving you the option to rollback a migration if something went wrong.

Change notification: The streamer component of VReplication can be used for the application or a systems operator to
subscribe to change notification and use it to keep downstream systems up-to-date with the source.

The VReplication feature itself is a fairly low level one that is expected to be used as a building block for the above use cases.
However, it’s still possible to directly issue commands to do some of the activities.

Feature description

VReplication works as a stream or combination of streams. Each stream establishes a replication from a source keyspace/shard
into a target keyspace/shard.

95

A given stream can replicate multiple tables. For each table, you can specify a select statement that represents both the
transformation rule and the filtering rule. The select expressions specify the transformation, and the where clause specifies the
filtering.

The select expressions can be any non-aggregate MySQL expression, or they can also be count or sum as aggregate expressions.
Aggregate expressions combined with the corresponding group by clauses will allow you to materialize real-time rollups of the
source table, which can be used for analytics. The target table can have a different name from the source.

For a sharded system like Vitess, multiple VReplication streams may be needed to achieve the necessary goals. This is because
there will be multiple source shards as well as destination shards, and the relationship between them may not be one to one.

VReplication performs the following essential functions:

o Copy data from the source to the destination table in a consistent fashion. For large data, this copy can be long-running.
It can be interrupted and resumed. If interrupted, VReplication can keep the copied portion up-to-date with respect to
the source, and it can resume the copy process at a point that’s consistent with the current replication position.

o After copying is finished, it can continuously replicate the data from the source to destination.

e The copying rule can be expressed as a select statement. The statement should be simple enough that the materialized
table can be kept up-to-date from the data coming from the binlog. For example, joins are not supported.

e Correctness verification: VReplication can verify that the target table is an exact representation of the select statement
from the source by capturing consistent snapshots of the source and target and comparing them against each other. This
step can be done without the need to create special snapshot replicas.

e Journaling: If there is any kind of traffic cut-over where we start writing to a different table than we used to before,
VReplication will save the current binlog positions into a journal table. This can be used by other streams to resume
replication from the new source.

¢ Routing rules: Although this feature is itself not a direct functionality of VReplication, it works hand in hand with it. It
allows you to specify sophisticated rules about where to route queries depending on the type of workflow being performed.
For example, it can be used to control the cut-over during resharding. In the case of materialized views, it can be used to
establish equivalence of tables, which will allow VT Gate to compute the most optimal plans given the available options.

VReplicationExec

The VReplicationExec command is used to manage vreplication streams. The commands are issued as SQL statements. For
example, a select can be used to see the current list of streams. An insert can be used to create one, etc. By design, the
metadata for vreplication streams are stored in a vreplication table in the vt database. VReplication uses the ‘pull’” model.
This means that a stream is created on the target side, and the target pulls the data by finding the appropriate source.

The table schema is as follows:

CREATE TABLE _vt.vreplication (
id INT AUTO_INCREMENT,
workflow VARBINARY (1000),
source VARBINARY (10000) NOT NULL,
pos VARBINARY (10000) NOT NULL,
stop_pos VARBINARY (10000) DEFAULT NULL,
max_tps BIGINT (20) NOT NULL,
max_replication_lag BIGINT(20) NOT NULL,
cell VARBINARY (1000) DEFAULT NULL,
tablet_types VARBINARY (100) DEFAULT NULL,
time_updated BIGINT (20) NOT NULL,
transaction_timestamp BIGINT (20) NOT NULL,
state VARBINARY (100) NOT NULL,
message VARBINARY (1000) DEFAULT NULL,
db_name VARBINARY (255) NOT NULL,
PRIMARY KEY (id)

)

The fields are explained in the following section.

This is the syntax of the command:

96

VReplicationExec [-json] <tablet alias> <sql command>

Here’s an example of the command to list all existing streams for a given tablet.

lvtctl.sh VReplicationExec 'tablet-100' 'select * from _vt.vreplication'

Creating a stream It’s generally easier to send the VReplication command programmatically instead of a bash script. This
is because of the number of nested encodings involved:

e One of the arguments is an SQL statement, which can contain quoted strings as values.
e One of the strings in the SQL statement is a string encoded protobuf, which can contain quotes.
¢ One of the parameters within the protobuf is an SQL select expression for the materialized view.

However, you can use vreplgen.go to generate a fully escaped bash command.
Alternately, you can use a python program. Here’s an example:

cmd = [
'./lvtctl.sh',
'VReplicationExec',
'test-200",
"""insert into _vt.vreplication
(db_mname, source, pos, maz_tps, maz_replication_lag, tablet_types, time_updated,
transaction_timestamp, state) wvalues
('vt_keyspace', 'keyspace:"lookup" shard:"0" filter:<rules:<match:"uproduct"
filter:"select * from product”" > >', '', 99999, 99999, 'master', 0, 0, 'Running')""",
]

The first argument to the command is the master tablet id of the target keyspace/shard.

The second argument is the SQL command. To start a new stream, you need an insert statement. The parameters are as follows:

e db_name: This name must match the name of the MySQL database. In the future, this will not be required, and will be
automatically filled in by the vttablet.

e source: The protobuf representation of the stream source, explained below.

e pos: For a brand new stream, this should be empty. To start from a specific position, a flavor-encoded position must be
specified. A typical position would look like this MySQL56/ac6c45eb-71c2-11e9-92ea-0a580a1c1026:1-1296

e max_tps: 99999, reserved.

e max_replication_lag: 99999, reserved.

e tablet_types: specifies a comma separated list of tablet types to replicate from. If empty, the default tablet type specified
by the -vreplication_tablet_type command line flag is used.

e time_updated: 0, reserved.

e transaction_timestamp: 0, reserved.

e state: ‘Running’ or ‘Stopped’.

e cell: is an optional parameter that specifies the cell from which the stream can be sourced.

The source field The source field is a proto-encoding of the following structure:

message BinlogSource {
// the source keyspace
string keyspace = 1;
// the source shard
string shard = 2;
// list of filtering rules
Filter filter = 6;
// what to do if a DDL is encountered
OnDDLAction on_ddl = 7;

97

https://github.com/vitessio/contrib/blob/master/vreplgen/vreplgen.go

}

message Filter {
repeated Rule rules = 1;

}

message Rule {
// match can be a table name or a regular expression
// delineated by '/' and '/'.
string match = 1;
// filter can be an empty string or keyrange if the match
// is a regular expression. Otherwise, it must be a select
// query.
string filter = 2;
X

enum OnDDLAction {
IGNORE = 0;
STOP = 1;
EXEC = 2;
EXEC_IGNORE = 3;
}

Here are some examples of proto encodings:

keyspace:"lookup" shard:"O" filter:<rules:<match:"uproduct" filter:"select * from product"
> >

Meaning: replicate all columns and rows of product from lookup/0.product into the uproduct table in target keyspace.

keyspace:"user" shard:"-80" filter:<rules:<match:"morder" filter:"select * from uorder

where in_keyrange (mname, \\'unicode_loose_md5\\', \\'-80\\'")" > >

The double-backslash for the strings inside the select will first be escaped by the python script, which will cause the expression to
internally be \'unicode_loose_md5\'. Since the entire source is surrounded by single quotes when being sent as a value inside
the outer insert statement, the single \ will escape the single quotes that follow. The final value in the source will therefore be:

keyspace:"user" shard:"-80" filter:<rules:<match:"morder" filter:"select * from uorder
where in_keyrange (mname, 'unicode_loose_md5', '-80')" > >
Meaning: replicate all columns of user/-80.uorder where unicode_loose_md5 (mname) is within -80 keyrange, into morder

This particular stream generally wouldn’t make sense in isolation. This would typically be one of four streams that combine
together to create a materialized view of uorder from the user keyspace into the target (merchant) keyspace, but sharded by
using mname as the primary vindex. The vindex used would be unicode_loose_md5 which should also match the primary vindex
of other tables in the target keyspace.

keyspace:"user" shard:"-80" filter:<rules:<match:"sales" filter:"select pid, count(*) as
kount, sum(price) as amount from uorder group by pid" > >

Meaning: create a materialized view of user/-80.uorder into sales of the target keyspace using the expression: select pid,
count (*)as kount, sum(price)as amount from uorder group by pid.

This represents only one stream from source shard -80. Presumably, there will be one more for the other -80 shard.

The ‘select’ features The select statement has the following features (and restrictions):

e The Select expressions can be any deterministic MySQL expression. Subqueries are not supported. Among aggregate
expressions, only count (*) and sum(col) are supported.

98

e The where clause can only contain the in_keyrange construct. It has two forms:

— in_keyrange('-80'): The row’s source keyrange matched against -80.
— in_keyrange(col, 'hash', '-80'): The keyrange is computed using hash(col) and matched against -80.

e group by: can be specified if using aggregations. The group by expressions are expected to cover the non-aggregated
columns just like regular SQL requires.
e No other constructs like order by, limit, joins, etc. are allowed.

The pos field For starting a brand new vreplication stream, the pos field must be empty. The empty string signifies that
there’s no starting point for the vreplication. This causes VReplication to copy the contents of the source table first, and then
start the replication.

For large tables, this is done in chunks. After each chunk is copied, replication is resumed until it’s caught up. VReplication
ensures that only changes that affect existing rows are applied. Following this another chunk is copied, and so on, until all tables
are completed. After that, replication runs indefinitely.

It’s a shared row The vreplication row is shared between the operator and Vreplication itself. Once the row is created,
the VReplication stream updates various fields of the row to save and report on its own status. For example, the pos field is
continuously updated as it makes forward progress.

While copying, the state field is updated as Init or Copying.

Updating a stream You can change any field of the stream by issuing a VReplicationExec with an update statement. You
are required to specify the id of the row you intend to update. You can only update one row at a time.

Typically, you can update the row and change the state to Stopped to stop a stream, or to Running to restart a stopped stream.

You can also update the row to set a stop_pos, which will make the replication stop once it reaches the specified position.

Deleting a stream You can delete a stream by issuing a delete statement. This will stop the replication and delete the row.
This statement is destructive. All data about the replication state will be permanently deleted.

Other properties of VReplication

Fast replay VReplication has the capability to batch transactions if the send rate of the source exceeds the replay rate of the
destination. This allows it to catch up very quickly when there is a backlog. Load tests have shown a 3-20X improvement over
traditional MySQL replication depending on the workload.

Accurate lag tracking The source vttablet sends its current time along with every event. This allows the target to correct
for clock skew while estimating replication lag. Additionally, the source starts sending heartbeats if there is nothing to send. If
the target receives no events from the source at all, it knows that it’s definitely lagged and starts reporting itself accordingly.

Self-replication VReplication allows you to set the source keyspace/shard to be the same as the target. This is especially
useful for performing schema rollouts: you can create the target table with the intended schema and vreplicate from the source
table to the new target. Once caught up, you can cutover to write to the target table. In this situation, an apply on the target
generates a binlog event that will be picked up by the source and sent to the target. Typically, it will be an empty transaction.
In such cases, the target does not generally apply these transactions, because such an application will generate yet another
event. However, there are situations where one needs to apply empty transactions, especially if it’s a required stopping point.
VReplication can differentiate between these situations and apply events only as needed.

Deadlocks and lock wait timeouts It is possible that multiple streams can conflict with each other and cause deadlocks
or lock waits. When such things happen, VReplication silently retries such transactions without reporting an error. It does
increment a counter so that the frequency of such occurrences can be tracked.

99

Automatic retries If any other error is encountered, the replication is retried after a short wait. Each time, the stream
searches from the full list of available sources and picks one at random.

on_ddl The source specification allows you to specify a value for on_ddl. This allows you to specify what to do with DDL
SQL statements when they are encountered in the replication stream from the source. The values can be as follows:

o IGNORE: Ignore all DDLs (this is also the default, if a value for on_ddl is not provided).

e STOP: Stop when DDL is encountered. This allows you to make any necessary changes to the target. Once changes are
made, updating the state to Running will cause VReplication to continue from just after the point where it encountered
the DDL.

e EXEC: Apply the DDL, but stop if an error is encountered while applying it.

e EXEC_IGNORE: Apply the DDL, but ignore any errors and continue replicating.

Failover continuation If a failover is performed on the target keyspace/shard, the new master will automatically resume
VReplication from where the previous master left off.

Monitoring and troubleshooting

VTTablet /debug/status The first place to look at is the /debug/status page of the target master vttablet. The bottom
of the page shows the status of all the VReplication streams.

Typically, if there is a problem, the Last Message column will display the error. Sometimes, it’s possible that the stream cannot
find a source. If so, the Source Tablet would be empty.

VTTablet logfile If the errors are not clear or if they keep disappearing, the VT Tablet logfile will contain information about
what it’s been doing with each stream.

VReplicationExec select The current status of the streams can also be fetched by issuing a VReplicationExec command
with select * from _vt.vreplication.

Monitoring variables VReplication also reports the following variables that can be scraped by monitoring tools like
prometheus:

¢ VReplicationStreamCount: Number of VReplication streams.

¢ VReplicationSecondsBehindMasterMax: Max vreplication seconds behind master.

e VReplicationSecondsBehindMaster: vreplication seconds behind master per stream.
e VReplicationSource: The source for each VReplication stream.

¢ VReplicationSourceTablet: The source tablet for each VReplication stream.

Thresholds and alerts can be set to draw attention to potential problems.

VSchema
VSchemas describe how to shard data

VSchema stands for Vitess Schema. In contrast to a traditional database schema that contains metadata about tables, a VSchema
contains metadata about how tables are organized across keyspaces and shards. Simply put, it contains the information needed
to make Vitess look like a single database server.

For example, the VSchema will contain the information about the sharding key for a sharded table. When the application
issues a query with a WHERE clause that references the key, the VSchema information will be used to route the query to the
appropriate shard.

100

Sharded keyspaces require a VSchema

A VSchema is needed to tie together all the databases that Vitess manages. For a very trivial setup where there is only one
unsharded keyspace, there is no need to specify a VSchema because Vitess will know that there is no other place to route a

query.

If you have multiple unsharded keyspaces, you can still avoid defining a VSchema in one of two ways:

1. Connect to a keyspace and all queries are sent to it.
2. Connect to Vitess without specifying a keyspace, but use qualified names for tables, like keyspace.table in your queries.

However, once the setup exceeds the above complexity, VSchemas become a necessity. Vitess has a working demo of VSchemas.

Sharding Model

In Vitess, a keyspace is sharded by keyspace ID ranges. Each row is assigned a keyspace ID, which acts like a street address,
and it determines the shard where the row lives. In some respect, one could say that the keyspace ID is the equivalent of a
NoSQL sharding key. However, there are some differences:

1. The keyspace ID is a concept that is internal to Vitess. The application does not need to know anything about it.
2. There is no physical column that stores the actual keyspace ID. This value is computed as needed.

This difference is significant enough that we do not refer to the keyspace ID as the sharding key. A Primary Vindex more closely
resembles the NoSQL sharding key.

Mapping to a keyspace ID, and then to a shard, gives us the flexibility to reshard the data with minimal disruption because
the keyspace ID of each row remains unchanged through the process.

Vindexes

The Vschema contains the Vindex for any sharded tables. The Vindex tells Vitess where to find the shard that contains a
particular row for a sharded table. Every VSchema must have at least one Vindex, called the Primary Vindex, defined. The
Primary Vindex is unique: given an input value, it produces a single keyspace ID, or value in the keyspace used to shard the
table. The Primary Vindex is typically a functional Vindex: Vitess computes the keyspace ID as needed from a column in the
sharded table.

Sequences

Auto-increment columns do not work very well for sharded tables. Vitess sequences solve this problem. Sequence tables must
be specified in the VSchema, and then tied to table columns. At the time of insert, if no value is specified for such a column,
VTGate will generate a number for it using the sequence table.

Reference tables

Vitess allows you to create an unsharded table and deploy it into all shards of a sharded keyspace. The data in such a table is
assumed to be identical for all shards. In this case, you can specify that the table is of type reference, and should not specify
any vindex for it. Any joins of this table with an unsharded table will be treated as a local join.

Typically, such a table has a canonical source in an unsharded keyspace, and the copies in the sharded keyspace are kept
up-to-date through VReplication.

Configuration

The configuration of your VSchema reflects the desired sharding configuration for your database, including whether or not your
tables are sharded and whether you want to implement a secondary Vindex.

101

https://github.com/vitessio/vitess/tree/master/examples/demo

Unsharded Table The following snippets show the necessary configs for creating a table in an unsharded keyspace:
Schema:

lookup keyspace
create table name_user_idx (name varchar(128), user_id bigint, primary key(name, user_id));

VSchema:

// lookup keyspace
{
"sharded": false,
"tables": {
"name_user_idx": {}
}
}

For a normal unsharded table, the VSchema only needs to know the table name. No additional metadata is needed.

Sharded Table With Simple Primary Vindex To create a sharded table with a simple Primary Vindex, the VSchema
requires more information:

Schema:

user keyspace
create table user (user_id bigint, name varchar(128), primary key(user_id));

VSchema:
// user keyspace
{
"sharded": true,
"vindexes": {
"hash": {
"typell: Ilhashll
}
},
"tables": {
"user": {
"column_vindexes": [
{
"column": "user_id",
"name": "hash"
¥
]
}
}
¥

Because Vindexes can be shared, the JSON requires them to be specified in a separate vindexes section, and then referenced by
name from the tables section. The VSchema above simply states that user_id uses hash as Primary Vindex. The first Vindex
of every table must be the Primary Vindex.

Specifying A Sequence Since user is a sharded table, it will be beneficial to tie it to a Sequence. However, the sequence
must be defined in the lookup (unsharded) keyspace. It is then referred from the user (sharded) keyspace. In this example, we
are designating the user_id (Primary Vindex) column as the auto-increment.

Schema:

102

lookup keyspace

create table user_seq(id int, next_id bigint, cache bigint, primary key(id)) comment
'vitess_sequence';

insert into user_seq(id, next_id, cache) values(0, 1, 3);

For the sequence table, id is always 0. next_id starts off as 1, and the cache is usually a medium-sized number like 1000. In
our example, we are using a small number to showcase how it works.

VSchema:

// lookup keyspace
{
"sharded": false,
"tables": {
"user_seq": {
"type": "sequence"

}
}

// user keyspace
{
"sharded": true,
"vindexes": {
"hash": {
lltypell: Ilhashll
}
1,
"tables": {
"user": {
"column_vindexes": [
{
"column": "user_id",
"name": "hash"
}
1
"auto_increment": {
"column": "user_id",
"sequence": "user_seq"

}

Specifying A Secondary Vindex The following snippet shows how to configure a Secondary Vindex that is backed by a
lookup table. In this case, the lookup table is configured to be in the unsharded lookup keyspace:

Schema:
lookup keyspace
create table name_user_idx(name varchar (128), user_id bigint, primary key(name, user_id));

VSchema:

// lookup keyspace
{

"sharded": false,
"tables": {

103

"name user_idx": {}
+
+

// user keyspace
{
"sharded": true,
"vindexes": {
"name_user_idx": {
"type": "lookup_hash",
"params": {
"table": "name_user_idx",
"from": "name",
"to": "user_id"
Y
"owner": "user"
}
1,
"tables": {
"user": {
"column_vindexes": [
{
"column": "name",
"name": "name_user_idx"

To recap, a checklist for creating the shared Secondary Vindex is:

o Create physical name_user_idx table in lookup database.

e Define a routing for it in the lookup VSchema.

e Define a Vindex as type lookup_hash that points to it. Ensure that the params match the table name and columns.
e Define the owner for the Vindex as the user table.

e Specify that name uses the Vindex.

Currently, these steps have to be currently performed manually. However, extended DDLs backed by improved automation will
simplify these tasks in the future.

Advanced usage The examples/demo also shows more tricks you can perform:

e The music table uses a secondary lookup vindex music_user_idx. However, this lookup vindex is itself a sharded table.

e music_extra shares music_user_idx with music, and uses it as Primary Vindex.

e music_extra defines an additional Functional Vindex called keyspace_id which the demo auto-populates using the reverse
mapping capability.

e There is also a name_info table that showcases a case-insensitive Vindex unicode_loose_md5.

MySQL Compatibility

VTGate servers speak both gRPC and the MySQL server protocol. This allows you to connect to Vitess as if it were a MySQL

Server without any changes to application code. This document refers to known compatibility issues where Vitess differs from
MySQL.

104

Transaction Model

Vitess provides READ COMMITTED semantics when executing cross-shard queries. This differs to MySQL, which defaults to
REPEATABLE READ.

SQL Syntax

The following describes some of the major differences in SQL Syntax handling between Vitess and MySQL. For a list of unsup-
ported queries, check out the test-suite cases.

DDL Vitess supports MySQL DDL, and will send ALTER TABLE statements to each of the underlying tablet servers. For
large tables it is recommended to use an external schema deployment tool and apply directly to the underlying MySQL shard
instances. This is discussed further in Applying MySQL Schema.

Join Queries Vitess supports INNER JOIN including cross-shard joins. LEFT JOIN is supported as long as there are not
expressions that compare columns on the outer table to the inner table in sharded keyspaces.

Aggregation Vitess supports a subset of GROUP BY operations, including cross-shard operations. The VTGate servers are
capable of scatter-gather operations, but can only stream results. Thus, a query that performs a GROUP BY colx ORDER BY
coly may be refused if the intermediate result set is larger than VT Gate’s in-memory limit.

Subqueries Vitess supports a subset of subqueries. For example, a subquery combined with a GROUP BY operation is not
supported.

Stored Procedures Vitess does not yet support MySQL Stored Procedures.

Window Functions and CTEs Vitess does not yet support Window Functions or Common Table Expressions.

Killing running queries Vitess does not yet support killing running shard queries via the KILL command through VTGate.
Vitess does have strict query timeouts for OLTP workloads (see below). If you need a query, you can connect to the underlying
MySQL shard instance and run KILL from there.

Cross-shard Transactions By default, Vitess does not support transactions that span across shards. While Vitess can
support this with the use of Two-Phase Commit, it is usually recommended to design the VSchema in such a way that cross-
shard modifications are not required.

OLAP Workload By default, Vitess sets some intentional restrictions on the execution time and number of rows that a query
can return. This default workload mode is called OLTP. This can be disabled by setting the workload to OLAP:

SET workload='olap'

SELECT ... INTO Statement The SELECT ... INTO form of SELECT in MySQL enables a query result to be stored in vari-
ables or written to a file. Vitess supports SELECT ... INTO DUMFILE and SELECT ... INTO OUTFILE constructs for unsharded
keyspaces but does not support storing results in variable. Moreover, the position of INTO must be towards the end of the query
and not in the middle. An example of a correct query is as follows:

SELECT * FROM <tableName> INTO OUTFILE 'x.txt' FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED
BY '"' ESCAPED BY '\t' LINES TERMINATED BY ' '

For sharded keyspaces this statement can still be used but only after specifying the exact shard with a USE Statement.

105

https://github.com/vitessio/vitess/blob/master/go/vt/vtgate/planbuilder/testdata/unsupported_cases.txt

LOAD DATA Statement LOAD DATA is the complement of SELECT ... INTO OUTFILE that reads rows from a text file into
a table at a very high speed. Just like SELECT ... INTO statement, LOAD DATA is also supported in unsharded keyspaces. An
example of a correct query is as follows:

LOAD DATA INFILE 'x.txt' INTO REPLACE TABLE <tableName> FIELDS TERMINATED BY ';' OPTIONALLY
ENCLOSED BY '"' ESCAPED BY '\t' LINES TERMINATED BY ' '

For sharded keyspaces this statement can still be used but only after specifying the exact shard with a USE Statement.

Network Protocol

Prepared Statements Starting with version 4.0, Vitess features experimental support for prepared statements via the MySQL
protocol. Session-based commands using the PREPARE and EXECUTE SQL statements are not supported.

Authentication Plugins Vitess supports the mysql_native_password authentication plugin. Support for caching_sha2_password
can be tracked in #5399.

Transport Security To configure VT Gate to support TLS set -mysql_server_ssl_cert and -mysql_server_ssl_key. Client
certificates can also be mandated by setting -mysql_server_ssl_ca. If there is no CA specified then TLS is optional.

Temporary Tables

Vitess does not support the use of temporary tables.

Character Set and Collation

Vitess only supports utf8 and variants such as utf8mb4.

SQL Mode

Vitess behaves similar to the STRICT_TRANS_TABLES sql mode, and does not recommend changing the SQL Mode setting.

Data Types
Vitess supports all of the data types available in MySQL. Using the FLOAT data type as part of a PRIMARY KEY is strongly

discouraged, since features such as filtered replication and VReplication will not correctly be able to detect which rows should
be included as part of a modification.

Auto Increment

Tables in sharded keyspaces do not support the auto_increment column attribute, as the values generated would be local only
to each shard. Vitess Sequences are provided as an alternative, which have very close semantics to auto_increment.

Extensions to MySQL Syntax

SHOW Statements Vitess supports a few additional options with the SHOW statement.

e SHOW keyspaces — A list of keyspaces available.

e SHOW vitess_tablets — Information about the current Vitess tablets such as the keyspace, key ranges, tablet type,
hostname, and status.

e SHOW vitess_shards — A list of shards that are available.

106

https://github.com/vitessio/vitess/issues/5399

e SHOW vschema tables — A list of tables available in the current keyspace’s vschema.
e SHOW vschema vindexes — Information about the current keyspace’s vindexes such as the keyspace, name, type, params,
and owner. Optionally supports an “ON” clause with a table name.

USE Statements Vitess allows you to select a keyspace using the MySQL USE statement, and corresponding binary API used
by client libraries. SQL statements can refer to a table in another keyspace by using the standard dot notation:

SELECT * FROM my_other_keyspace.table;

Vitess extends this functionality further by allowing you to select a specific shard and tablet-type within a USE statement
(backticks are important):

-- "KeyspacelName:shardKeyRange@tabletType ~
USE “mykeyspace:-80Q@rdonly "

A similar effect can be achieved by using a database name like mykeyspace:-80@rdonly in your MySQL application client
connection string.

Programs

description: Reference documents for list of Vitess programs

mysqlctl

mysqlctl is a command-line tool used for starting mysqld binaries. It is responsible for bootstrapping tasks such as generating
a configuration file for mysqld and ensuring that mysql_upgrade is run in the data directory when restoring from backup.

mysqld_safe will be also be utilized when present. This helps ensure that mysqld is automatically restarted after failures.

Commands

init [-wait_ time=5m)] [-init__db_ sql_ file=(default)] Bootstraps a new mysqld instance. The MySQL version and flavor
will be auto-detected, with a minimal configuration file applied. For example:

export VTDATAROOT=/tmp

mysqlctl \
-alsologtostderr \
-tablet_uid 101 \
-mysql_port 12345 \
init

init_ config Bootstraps the configuration for a new mysqld instance. This command is the same as init except the mysqld
server will not be started. For example:

export VTDATAROOT=/tmp

mysqlctl \
-alsologtostderr \
-tablet_uid 101 \
-mysql_port 12345 \
init_config

107

reinit__config Regenerate new configuration files for an existing mysqld instance. This could be helpful to revert configuration
changes, or to pick up changes made to the bundled config in newer Vitess versions. For example:

export VTDATAROOT=/tmp

mysqlctl \
-alsologtostderr \
-tablet_uid 101 \
-mysql_port 12345 \
reinit_config

teardown [-wait_ time=5m] [-force] Remove the data files for a previously shutdown mysqld instance. This is a destructive
operation:

export VTDATAROOT=/tmp
mysqlctl -tablet_uid 101 -alsologtostderr teardown

start [-wait__time=5m] Resume an existing mysqld instance that was previously bootstrapped with init or init_config:

export VTDATAROOT=/tmp
mysqlctl -tablet_uid 101 -alsologtostderr start

shutdown [-wait__time=5m] Stop a mysqld instance that was previously started with init or start.
For large mysqld instances, you may need to extend the -wait_time as flushing dirty pages.

export VTDATAROOT=/tmp
mysqlctl -tablet_uid 101 -alsologtostderr shutdown

Options

The following global parameters apply to mysqlctl:

Name Type Definition

alsologtostderr boolean log to standard error as well as files

app__idle_timeout duration Idle timeout for app connections
(default 1m0s)

app_ pool_size int Size of the connection pool for app
connections (default 40)

backup_ engine implementation string Specifies which implementation to use

for creating new backups (builtin or
xtrabackup). Restores will always be
done with whichever engine created a
given backup. (default “builtin”)

backup_ storage_block_size int if backup__storage compress is true,
backup_ storage_ block size sets the
byte size for each block while
compressing (default is 250000).
(default 250000)

backup_ storage compress boolean if set, the backup files will be
compressed (default is true). Set to
false for instance if a
backup__storage hook is specified and
it compresses the data. (default true)

backup__storage__hook string if set, we send the contents of the
backup files through this hook.

108

Name Type Definition

backup__storage_implementation string which implementation to use for the
backup storage feature

backup__storage_number_ blocks int if backup__storage compress is true,
backup_ storage number_ blocks sets
the number of blocks that can be
processed, at once, before the writer
blocks, during compression (default is
2). It should be equal to the number of
CPUs available for compression
(default 2)

cpu__profile string write cpu profile to file

datadog-agent-host string host to send spans to. if empty, no
tracing will be done

datadog-agent-port string port to send spans to. if empty, no
tracing will be done

db-credentials-file string db credentials file; send SIGHUP to
reload this file

db-credentials-server string db credentials server type (use ‘file’ for
the file implementation) (default “file”)

db__charset string Character set. Only utf8 or latinl
based character sets are supported.

db_ connect_timeout ms int connection timeout to mysqld in
milliseconds (0 for no timeout)

db__dba_ password string db dba password

db_dba_use_ssl boolean Set this flag to false to make the dba
connection to not use ssl (default true)

db__dba_ user string db dba user userKey (default
“vt_dba”)

db_ flags uint Flag values as defined by MySQL.

db_flavor string Flavor overrid. Valid value is FilePos.

db_ host string The host name for the tcp connection.

db_ port int tep port

db_server name string server name of the DB we are
connecting to.

db__socket string The unix socket to connect on. If this
is specified, host and port will not be
used.

db_ ssl ca string connection ssl ca

db_ssl_ca_ path string connection ssl ca path

db_ssl cert string connection ssl certificate

db_ssl_key string connection ssl key

dba__idle_ timeout duration Idle timeout for dba connections
(default 1m0s)

dba_ pool_size int Size of the connection pool for dba
connections (default 20)

disable_active_reparents boolean if set, do not allow active reparents.
Use this to protect a cluster using
external reparents.

emit_stats boolean true iff we should emit stats to
push-based monitoring/stats backends

grpc_auth__mode string Which auth plugin implementation to

grpc_auth_mtls_allowed_ substrings string

109

use (eg: static)

List of substrings of at least one of the
client certificate names (separated by
colon).

Name

Type

Definition

grpc_auth_ static_ client_ creds

grpc_auth_ static_ password_ file
grpc_ca

grpc_cert

grpc__compression

grpc__enable_ tracing
grpc__initial _conn_ window__size

grpc_initial _window__ size
grpc_keepalive_time

grpc_ keepalive_timeout

grpc_ key

grpc_max_ connection age

grpc_max_ connection_ age_ grace

grpc_max_ message_ size

grpc__port
grpc_ prometheus

string

string
string
string
string
boolean
int

int
duration

duration

string

duration

duration

int

int
boolean

grpc_server__initial conn_ window__sinet

grpc_server_initial window_ size

int

grpc_server_keepalive enforcement_ poliayiomin_ time

grpc_server_keepalive_enforcement_ polidsanpermit_ without_ stream

jaeger-agent-host
keep_ logs

keep_logs_ by mtime

string
duration

duration

110

when using grpc_ static_auth in the
server, this file provides the credentials
to use to authenticate with server
JSON File to read the users/passwords
from.

ca to use, requires TLS, and enforces
client cert check

certificate to use, requires grpc_ key,
enables TLS

how to compress gRPC, default:
nothing, supported: snappy

Enable GRPC tracing

grpc initial connection window size
grpc initial window size

After a duration of this time, if the
client doesn’t see any activity, it pings
the server to see if the transport is still
alive. (default 10s)

After having pinged for keepalive
check, the client waits for a duration of
Timeout and if no activity is seen even
after that the connection is closed.
(default 10s)

key to use, requires grpc_ cert, enables
TLS

Maximum age of a client connection
before GoAway is sent. (default
2562047h47m16.854775807s)
Additional grace period after
grpc_max__connection_ age, after
which connections are forcibly closed.
(default 2562047h47m16.854775807s)
Maximum allowed RPC message size.
Larger messages will be rejected by
gRPC with the error ‘exceeding the
max size’. (default 16777216)

Port to listen on for gRPC calls
Enable gRPC monitoring with
Prometheus

gRPC server initial connection window
size

gRPC server initial window size

gRPC server minimum keepalive time
(default 5m0s)

gRPC server permit client keepalive
pings even when there are no active
streams (RPCs)

host and port to send spans to. if
empty, no tracing will be done

keep logs for this long (using ctime)
(zero to keep forever)

keep logs for this long (using mtime)
(zero to keep forever)

Name Type Definition

lameduck-period duration keep running at least this long after
SIGTERM before stopping (default
50ms)

log backtrace_ at value when logging hits line file:N, emit a
stack trace

log dir string If non-empty, write log files in this
directory

log_err_ stacks boolean log stack traces for errors

log rotate_max_ size uint size in bytes at which logs are rotated
(glog.MaxSize) (default 1887436800)

logtostderr boolean log to standard error instead of files

master__connect_ retry duration how long to wait in between replica
reconnect attempts. Only precise to
the second. (default 10s)

mem-profile-rate int profile every n bytes allocated (default
524288)

mutex-profile-fraction int profile every n mutex contention events
(see runtime.SetMutexProfileFraction)

mysql_auth_server_ static_ file string JSON File to read the users/passwords
from.

mysql_auth_ server_ static_ string string JSON representation of the
users/passwords config.

mysql__auth_ static_ reload_ interval duration Ticker to reload credentials

mysql_ clientcert__auth_method string client-side authentication method to
use. Supported values:
mysql_ clear password, dialog.
(default “mysql_clear password”)

mysql__port int mysql port (default 3306)

mysql_server_ flush_ delay duration Delay after which buffered response
will be flushed to the client. (default
100ms)

mysql_socket string path to the mysql socket

mysqlctl_client_ protocol string the protocol to use to talk to the
mysqlctl server (default “grpc”)

mysqlctl _mycnf template string template file to use for generating the
my.cnf file during server init

mysqlctl_socket string socket file to use for remote mysqlctl
actions (empty for local actions)

onterm_ timeout duration wait no more than this for
OnTermSync handlers before stopping
(default 10s)

pid_ file string If set, the process will write its pid to
the named file, and delete it on
graceful shutdown.

pool__hostname_ resolve_interval duration if set force an update to all hostnames
and reconnect if changed, defaults to 0
(disabled)

port int vttablet port (default 6612)

purge_logs interval duration how often try to remove old logs
(default 1hOmOs)

remote_operation_ timeout duration time to wait for a remote operation

111

(default 30s)

Name Type Definition

security_ policy string the name of a registered security policy
to use for controlling access to URLSs -
empty means allow all for anyone
(built-in policies: deny-all, read-only)

service__map value comma separated list of services to
enable (or disable if prefixed with ‘")
Example: grpc-vtworker

sql-max-length-errors int truncate queries in error logs to the
given length (default unlimited)

sql-max-length-ui int truncate queries in debug Uls to the
given length (default 512) (default 512)

stats_backend string The name of the registered push-based
monitoring/stats backend to use

stats__combine dimensions string List of dimensions to be combined into
a single “all” value in exported stats
vars

stats_ drop_ variables string Variables to be dropped from the list of
exported variables.

stats__emit_ period duration Interval between emitting stats to all
registered backends (default 1mOs)

stderrthreshold value logs at or above this threshold go to
stderr (default 1)

tablet_ dir string The directory within the vtdataroot to
store vttablet/mysql files. Defaults to
being generated by the tablet uid.

tablet_ manager_ protocol string the protocol to use to talk to vttablet
(default “grpc”)

tablet_ uid uint tablet uid (default 41983)

topo__global_root string the path of the global topology data in
the global topology server

topo_ global_server address string the address of the global topology
server

topo__implementation string the topology implementation to use

tracer string tracing service to use (default “noop”)

tracing-sampling-rate float sampling rate for the probabilistic
jaeger sampler (default 0.1)

v value log level for V logs

version boolean print binary version

vmodule value comma-separated list of pattern=N
settings for file-filtered logging

xbstream__restore_ flags string flags to pass to xbstream command
during restore. These should be space
separated and will be added to the end
of the command. These need to match
the ones used for backup e.g. —compress
/ —decompress, —encrypt / —decrypt

xtrabackup_ backup_ flags string flags to pass to backup command.
These should be space separated and
will be added to the end of the
command

xtrabackup_ prepare_ flags string flags to pass to prepare command.

112

These should be space separated and
will be added to the end of the
command

Name Type Definition

xtrabackup_ root_ path string directory location of the xtrabackup
executable, e.g., /usr/bin

xtrabackup_stream_ mode string which mode to use if streaming, valid
values are tar and xbstream (default
“tar”)

xtrabackup_ stripe_ block_ size uint Size in bytes of each block that gets

sent to a given stripe before rotating to
the next stripe (default 102400)

xtrabackup__ stripes uint If greater than 0, use data striping
across this many destination files to
parallelize data transfer and
decompression

xtrabackup__user string User that xtrabackup will use to
connect to the database server. This
user must have all necessary privileges.
For details, please refer to xtrabackup
documentation.

vtctl Cell Aliases Command Reference

series: vtctl

The following vtctl commands are available for administering Cell Aliases.

Commands

AddcCellsAlias Defines a group of cells within which replica/rdonly traffic can be routed across cells. By default, Vitess does

not allow traffic between replicas that are part of different cells. Between cells that are not in the same group (alias), only master
traffic can be routed.

Example
Flags

Name Type Definition

cells string The list of cell names that are members of this alias.
Arguments

o <alias> — Required. Alias name for this grouping.

Errors

e the <alias> argument is required for the <AddCellsAlias> command This error occurs if the command is not called with
exactly one argument.

UpdateCellsAlias Updates the content of a CellAlias with the provided parameters. Empty values and intersections with
other aliases are not supported.

113

Example

Flags

Name Type Definition

cells string The list of cell names that are members of this alias.

Arguments

o <alias> — Required. Alias name group to update.

Errors

e the <alias> argument is required for the <UpdateCellsAlias> command This error occurs if the command is not called
with exactly one argument.

DeleteCellsAlias Deletes the CellsAlias for the provided alias. After deleting an alias, cells that were part of the group are
not going to be able to route replica/rdonly traffic to the rest of the cells that were part of the grouping.

Example

Errors

o the <alias> argument is required for the <DeleteCellsAlias> command This error occurs if the command is not called
with exactly one argument.

GetCellsAliases Fetches in json format all the existent cells alias groups.

Example

See Also

o vtctl command index

vtct]l Cell Command Reference

series: vtetl

The following vtctl commands are available for administering Cells.

Commands

AddCellInfo Registers a local topology service in a new cell by creating the Celllnfo with the provided parameters. The
address will be used to connect to the topology service, and we’ll put Vitess data starting at the provided root.

Example

Flags

114

Name Type Definition

root, string The root path the topology service is
using for that cell.
server__address string The address the topology service is

using for that cell.

Arguments

e <addr> — Required.
o <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

Errors

e the <cell> argument is required for the <AddCelllnfo>> command This error occurs if the command is not called with
exactly one argument.

DeleteCellInfo Deletes the Celllnfo for the provided cell. The cell cannot be referenced by any Shard record.

Example

Errors

e the <cell> argument is required for the <DeleteCelllnfo>> command This error occurs if the command is not called with
exactly one argument.

GetCellInfo Prints a JSON representation of the Celllnfo for a cell.

Example

Errors

e the <cell> argument is required for the <GetCelllnfo> command This error occurs if the command is not called with
exactly one argument.

GetCellInfoNames Lists all the cells for which we have a Celllnfo object, meaning we have a local topology service registered.

Example

Errors

e <GetCelllnfoNames> command takes no parameter This error occurs if the command is not called with exactly 0 argu-
ments.

UpdateCelllnfo Updates the content of a Celllnfo with the provided parameters. If a value is empty, it is not updated. The
Celllnfo will be created if it doesn’t exist.

115

Example

Flags
Name Type Definition
root string The root path the topology service is
using for that cell.
server__address string The address the topology service is
using for that cell.
Arguments

e <addr> — Required.
e <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

Errors

e the <cell> argument is required for the <UpdateCelllnfo>> command This error occurs if the command is not called with
exactly one argument.

GetCellInfo Prints a JSON representation of the Celllnfo for a cell.

Example

Errors

e the <cell> argument is required for the <GetCelllnfo> command This error occurs if the command is not called with
exactly one argument.

See Also

e vtctl command index

vtctl Generic Command Reference

series: vtctl

The following generic vtctl commands are available for administering Vitess.

Commands

Validate Validates that all nodes reachable from the global replication graph and that all tablets in all discoverable cells are
consistent.

Example

Flags

116

Name Type Definition

ping-tablets Boolean Indicates whether all tablets should be
pinged during the validation process

ListAllTablets Lists all tablets in an awk-friendly way.

Example

Arguments

e <cell name> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms
“cell” and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

Errors

e the <cell name> argument is required for the <ListAllTablets> command This error occurs if the command is not called
with exactly one argument.

ListTablets Lists specified tablets in an awk-friendly way.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>. To specify multiple values for this argument, separate individual values with a space.

Errors

e the <tablet alias> argument is required for the <ListTablets> command This error occurs if the command is not called
with at least one argument.

Help Provides help for a command.

Help [command name]

See Also

e vtctl command index

117

vtctl Keyspace Command Reference

series: vtetl

The following vtctl commands are available for administering Keyspaces.

Commands

CreateKeyspace Creates the specified keyspace.

Example
Flags
Name Type Definition
force Boolean Proceeds even if the keyspace already
exists
served_ from string Specifies a comma-separated list of
dbtype:keyspace pairs used to serve
traffic
sharding_ column_ name string Specifies the column to use for
sharding operations
sharding_ column__type string Specifies the type of the column to use

for sharding operations

Arguments

o <keyspace name> — Required. The name of a sharded database that contains one or more tables. Vitess distributes
keyspace shards into multiple machines and provides an SQL interface to query the data. The argument value must be a
string that does not contain whitespace.

Errors

e the <keyspace name> argument is required for the <CreateKeyspace> command This error occurs if the command is not

called with exactly one argument.

DeleteKeyspace Deletes the specified keyspace. In recursive mode, it also recursively deletes all shards in the keyspace.

Otherwise, there must be no shards left in the keyspace.

Example

Flags

Name

Type

Definition

recursive

Boolean

Also recursively delete all shards in the keyspace.

118

Arguments
o <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace

shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

Errors

o must specify the <keyspace> argument for <DeleteKeyspace> This error occurs if the command is not called with exactly
one argument.

RemoveKeyspaceCell Removes the cell from the Cells list for all shards in the keyspace, and the SrvKeyspace for that
keyspace in that cell.

Example
Flags
Name Type Definition
force Boolean Proceeds even if the cell’s topology

service cannot be reached. The
assumption is that you turned down
the entire cell, and just need to update
the global topo data.

recursive Boolean Also delete all tablets in that cell
belonging to the specified keyspace.

Arguments
e <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace
shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

e <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

Errors

e the <keyspace> and <cell> arguments are required for the <RemoveKeyspaceCell> command This error occurs if the
command is not called with exactly 2 arguments.

GetKeyspace Outputs a JSON structure that contains information about the Keyspace.

Example

Arguments
e <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace

shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

119

Errors

e the <keyspace> argument is required for the <GetKeyspace> command This error occurs if the command is not called
with exactly one argument.

GetKeyspaces Outputs a sorted list of all keyspaces.

Errors

o the <destination keyspace/shard> and <served tablet type> arguments are both required for the <MigrateServedFrom>
command This error occurs if the command is not called with exactly 2 arguments.

SetKeyspaceShardingInfo Updates the sharding information for a keyspace.

Example
Flags
Name Type Definition
force Boolean Updates fields even if they are already
set. Use caution before calling this
command.
Arguments

e <keyspace name> — Required. The name of a sharded database that contains one or more tables. Vitess distributes
keyspace shards into multiple machines and provides an SQL interface to query the data. The argument value must be a
string that does not contain whitespace.

e <column name> — Optional.

e <column type> — Optional.

Errors

e the <keyspace name> argument is required for the <SetKeyspaceShardinglnfo> command. The <column name> and
<column type> arguments are both optional This error occurs if the command is not called with between 1 and 3 arguments.
e both <column name> and <column type> must be set, or both must be unset

SetKeyspaceServedFrom Changes the ServedFromMap manually. This command is intended for emergency fixes. This field
is automatically set when you call the MigrateServedFrom command. This command does not rebuild the serving graph.

Example
Flags
Name Type Definition
cells string Specifies a comma-separated list of

cells to affect

120

https://vitess.io/docs/reference/programs/vtctl/keyspaces/#migrateservedfrom

Name Type Definition
remove Boolean Indicates whether to add (default) or
remove the served from record
source string Specifies the source keyspace name
Arguments

e <keyspace name> — Required. The name of a sharded database that contains one or more tables. Vitess distributes
keyspace shards into multiple machines and provides an SQL interface to query the data. The argument value must be a
string that does not contain whitespace.

o <tab

Errors

let type> — Required. The vttablet’s role. Valid values are:

backup — A replicated copy of data that is offline to queries other than for backup purposes

batch — A replicated copy of data for OLAP load patterns (typically for MapReduce jobs)

drained — A tablet that is reserved for a background process. For example, a tablet used by a vtworker process, where
the tablet is likely lagging in replication.

experimental — A replicated copy of data that is ready but not serving query traffic. The value indicates a special
characteristic of the tablet that indicates the tablet should not be considered a potential master. Vitess also does not
worry about lag for experimental tablets when reparenting.

master — A primary copy of data

rdonly — A replicated copy of data for OLAP load patterns

replica — A replicated copy of data ready to be promoted to master

restore — A tablet that is restoring from a snapshot. Typically, this happens at tablet startup, then it goes to its right
state.

spare — A replicated copy of data that is ready but not serving query traffic. The data could be a potential master
tablet.

o the <keyspace name> and <tablet type> arguments are required for the <SetKeyspaceServedFrom> command This error
occurs if the command is not called with exactly 2 arguments.

RebuildKeyspaceGraph Rebuilds the serving data for the keyspace. This command may trigger an update to all connected

clients.
Example
Flags
Name Type Definition
cells string Specifies a comma-separated list of cells to update
Arguments

e <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace
shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that

does

Errors

not contain whitespace. To specify multiple values for this argument, separate individual values with a space.

121

e the <keyspace> argument must be used to specify at least one keyspace when calling the <RebuildKeyspaceGraph>
command This error occurs if the command is not called with at least one argument.

ValidateKeyspace Validates that all nodes reachable from the specified keyspace are consistent.

Example
Flags
Name Type Definition
ping-tablets Boolean Specifies whether all tablets will be
pinged during the validation process
Arguments

o <keyspace name> — Required. The name of a sharded database that contains one or more tables. Vitess distributes
keyspace shards into multiple machines and provides an SQL interface to query the data. The argument value must be a
string that does not contain whitespace.

Errors

e the <keyspace name> argument is required for the <ValidateKeyspace> command This error occurs if the command is
not called with exactly one argument.

Reshard [-skip_schema_copy] <keyspace.workflow> <source_shards> <target_shards>
Start a Resharding process. Example: Reshard -cells='zonel,aliasl'
-tablet_types='master ,replica,rdonly' ks.workflow0O1 'O' '-80,80-"'.

MoveTables [-cell=<cell>] [-tablet_types=<source_tablet_types>] -workflow=<workflow>
<source_keyspace> <target_keyspace> <table_specs>
Move table(s) to another keyspace, table_specs is a list of tables or the tables section of

the vschema for the target keyspace. Example: '{"t1":{"column_vindexes": [{"column":
"id1", "name": "hash"}]}, "t2":{"column_vindexes": [{"column": "id2", "name":
"hash"}]}}'. In the case of an unsharded target keyspace the vschema for each table may

be empty. Example: '{"t1":{}, "t2":{}}'.

DropSources [-dry_run] <keyspace.workflow>
After a MoveTables or Resharding workflow cleanup unused artifacts like source tables,
source shards and blacklists.

CreatelLookupVindex [-cell=<cell>] [-tablet_types=<source_tablet_types>] <keyspace>
<json_spec>

Create and backfill a lookup vindex. the json_spec must contain the vindex and colvindex
specs for the new lookup.

122

ExternalizeVindex <keyspace>.<vindex>
Externalize a backfilled vindex.

Materialize <json_spec>, example : '{"workflow": "aaa", "source_keyspace": "source",
"target_keyspace": "target", "table_settings": [{"target_table": "customer",
"source_expression": "select * from customer", "create_ddl": "copy"}]}'

Performs materialization based on the json spec. Is used directly to form VReplication
rules, with an optional step to copy table structure/DDL.

SplitClone <keyspace> <from_shards> <to_shards>
Start the SplitClone process to perform horizontal resharding. Example: SplitClone ks 'O'
'-80,80-"

VerticalSplitClone <from_keyspace> <to_keyspace> <tables>
Start the VerticalSplitClone process to perform vertical resharding. Example: SplitClone
from_ks to_ks 'a,/b.x/'

VDiff [-source_cell=<cell>] [-target_cell=<cell>] [-tablet_types=replical
[-filtered_replication_wait_time=30s] <keyspace.workflow>
Perform a diff of all tables in the workflow

MigrateServedTypes Migrates a serving type from the source shard to the shards that it replicates to. This command also
rebuilds the serving graph. The <keyspace/shard> argument can specify any of the shards involved in the migration.

Example
Flags
Name Type Definition
cells string Specifies a comma-separated list of
cells to update
filtered_ replication_ wait_ time Duration Specifies the maximum time to wait, in
seconds, for filtered replication to catch
up on master migrations
reverse Boolean Moves the served tablet type backward
instead of forward. Use in case of
trouble
skip-refresh-state Boolean Skips refreshing the state of the source

tablets after the migration, meaning
that the refresh will need to be done
manually, replica and rdonly only)
reverse_ replication Boolean For master migration, enabling this
flag reverses replication which allows
123 you to rollback

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

o <served tablet type> — Required. The vttablet’s role. Valid values are:

Errors

backup — A replicated copy of data that is offline to queries other than for backup purposes

batch — A replicated copy of data for OLAP load patterns (typically for MapReduce jobs)

drained — A tablet that is reserved for a background process. For example, a tablet used by a vtworker process, where
the tablet is likely lagging in replication.

experimental — A replicated copy of data that is ready but not serving query traffic. The value indicates a special
characteristic of the tablet that indicates the tablet should not be considered a potential master. Vitess also does not
worry about lag for experimental tablets when reparenting.

master — A primary copy of data

rdonly — A replicated copy of data for OLAP load patterns

replica — A replicated copy of data ready to be promoted to master

restore — A tablet that is restoring from a snapshot. Typically, this happens at tablet startup, then it goes to its right
state.

spare — A replicated copy of data that is ready but not serving query traffic. The data could be a potential master
tablet.

o the <source keyspace/shard> and <served tablet type> arguments are both required for the <MigrateServedTypes>
command This error occurs if the command is not called with exactly 2 arguments.
o the <skip-refresh-state> flag can only be specified for non-master migrations

MigrateServedFrom Makes the <destination keyspace/shard> serve the given type. This command also rebuilds the serving

graph.
Example
Flags
Name Type Definition
cells string Specifies a comma-separated list of
cells to update
filtered_ replication_ wait_ time Duration Specifies the maximum time to wait, in
seconds, for filtered replication to catch
up on master migrations
reverse Boolean Moves the served tablet type backward
instead of forward. Use in case of
trouble
Arguments

o <destination keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as
the shard associated with the command. The keyspace must be identified by a string that does not contain whitespace,
while the shard is typically identified by a string in the format <range start>-<range end>.

o <served tablet type> — Required. The vttablet’s role. Valid values are:

124

— backup — A replicated copy of data that is offline to queries other than for backup purposes

— batch — A replicated copy of data for OLAP load patterns (typically for MapReduce jobs)

— drained — A tablet that is reserved for a background process. For example, a tablet used by a vtworker process, where
the tablet is likely lagging in replication.

— experimental — A replicated copy of data that is ready but not serving query traffic. The value indicates a special
characteristic of the tablet that indicates the tablet should not be considered a potential master. Vitess also does not
worry about lag for experimental tablets when reparenting.

— master — A primary copy of data

— rdonly — A replicated copy of data for OLAP load patterns

— replica — A replicated copy of data ready to be promoted to master

— restore — A tablet that is restoring from a snapshot. Typically, this happens at tablet startup, then it goes to its right
state.

— spare — A replicated copy of data that is ready but not serving query traffic. The data could be a potential master
tablet.

Errors

o the <destination keyspace/shard> and <served tablet type> arguments are both required for the <MigrateServedFrom>
command This error occurs if the command is not called with exactly 2 arguments.

SwitchReads [-cells=cl,c2,...] [-reverse] -tablet_type={replicalrdonly} [-dry-run]
<keyspace.workflow>
Switch read traffic for the specified workflow.

SwitchWrites [-filtered_replication_wait_time=30s] [-cancel] [-reverse_replication=false]
[-dry-run] <keyspace.workflow>
Switch write traffic for the specified workflow.

CancelResharding Permanently cancels a resharding in progress. All resharding related metadata will be deleted.

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

ShowResharding Displays all metadata about a resharding in progress.

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

FindAllShardsInKeyspace Displays all of the shards in the specified keyspace.

Example

125

Arguments

o <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace
shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

Errors

o the <keyspace> argument is required for the <FindAllShardsInKeyspace> command This error occurs if the command is
not called with exactly one argument.

WaitForDrain Blocks until no new queries were observed on all tablets with the given tablet type in the specified keyspace.
This can be used as sanity check to ensure that the tablets were drained after running vtctl MigrateServedTypes and vtgate is
no longer using them. If -timeout is set, it fails when the timeout is reached.

Example
Flags
Name Type Definition
cells string Specifies a comma-separated list of cells to look for tablets
initial wait Duration Time to wait for all tablets to check in
retry__delay Duration Time to wait between two checks
timeout Duration Timeout after which the command fails
Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

o <served tablet type> — Required. The vttablet’s role. Valid values are:

Errors

backup — A replicated copy of data that is offline to queries other than for backup purposes

batch — A replicated copy of data for OLAP load patterns (typically for MapReduce jobs)

drained — A tablet that is reserved for a background process. For example, a tablet used by a vtworker process, where
the tablet is likely lagging in replication.

experimental — A replicated copy of data that is ready but not serving query traffic. The value indicates a special
characteristic of the tablet that indicates the tablet should not be considered a potential master. Vitess also does not
worry about lag for experimental tablets when reparenting.

master — A primary copy of data

rdonly — A replicated copy of data for OLAP load patterns

replica — A replicated copy of data ready to be promoted to master

restore — A tablet that is restoring from a snapshot. Typically, this happens at tablet startup, then it goes to its right
state.

spare — A replicated copy of data that is ready but not serving query traffic. The data could be a potential master
tablet.

o the <keyspace/shard> and <tablet type> arguments are both required for the <WaitForDrain> command This error
occurs if the command is not called with exactly 2 arguments.

126

See Also

¢ vtctl command index

vtctl Query Command Reference

series: vtetl

The following vtctl commands are available for administering queries.
Commands

VtGateExecute FExecutes the given SQL query with the provided bound variables against the vtgate server.

Example
Flags
Name Type Definition
json Boolean Output JSON instead of
human-readable table
options string execute options values as a text
encoded proto of the ExecuteOptions
structure
server string VtGate server to connect to
target string keyspace:shard@tablet_ type
Arguments

o <vtgate> — Required.
o <sql> — Required.

Errors

e the <sql> argument is required for the <VtGateExecute> command This error occurs if the command is not called with
exactly one argument.

o query commands are disabled (set the -enable queries flag to enable)

e error connecting to vtgate ‘%v’: %v

o Execute failed: %v

VtTabletExecute Executes the given query on the given tablet. -transaction_ id is optional. Use VtTabletBegin to start a
transaction.

Example

Flags

127

Name Type Definition

json Boolean Output JSON instead of
human-readable table

options string execute options values as a text
encoded proto of the ExecuteOptions
structure

transaction_ id Int transaction id to use, if inside a
transaction.

username string If set, value is set as immediate caller

id in the request and used by vttablet
for TableACL check

Arguments

e <TableACL user> — Required.

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

e <sql> — Required.

Errors

o the <tablet_alias> and <sql> arguments are required for the <VtTabletExecute> command This error occurs if the
command is not called with exactly 2 arguments.

e query commands are disabled (set the -enable queries flag to enable)

 cannot connect to tablet %v: %v

o Execute failed: %v

VtTabletBegin Starts a transaction on the provided server.

Example
Flags
Name Type Definition
username string If set, value is set as immediate caller
id in the request and used by vttablet
for TableACL check
Arguments

e <TableACL user> — Required.
e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

e the <tablet_alias> argument is required for the <VtTabletBegin> command This error occurs if the command is not
called with exactly one argument.
o query commands are disabled (set the -enable queries flag to enable)

128

e cannot connect to tablet %v: %v
o Begin failed: %v

VtTabletCommit Commits the given transaction on the provided server.

Example
Flags
Name Type Definition
username string If set, value is set as immediate caller
id in the request and used by vttablet
for TableACL check
Arguments

e <TableACL user> — Required.
e <transaction_id> — Required.

Errors

o the <tablet_ alias> and <transaction_id> arguments are required for the <VtTabletCommit> command This error occurs
if the command is not called with exactly 2 arguments.

o query commands are disabled (set the -enable queries flag to enable)

e cannot connect to tablet %v: %v

VtTabletRollback Rollbacks the given transaction on the provided server.

Example
Flags
Name Type Definition
username string If set, value is set as immediate caller
id in the request and used by vttablet
for TableACL check
Arguments

e <TableACL user> — Required.

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

e <transaction_ id> — Required.

Errors

e the <tablet_alias> and <transaction_ id> arguments are required for the <VtTabletRollback> command This error
occurs if the command is not called with exactly 2 arguments.

129

e query commands are disabled (set the -enable queries flag to enable)
« cannot connect to tablet %v: %v

VtTabletStreamHealth Executes the StreamHealth streaming query to a vttablet process. Will stop after getting <count>
answers.

Example
Flags

Name Type Definition

count Int number of responses to wait for
Arguments

e <count default 1> — Required.
e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors
« the <tablet alias> argument is required for the <VtTabletStreamHealth> command This error occurs if the command is
not called with exactly one argument.

o query commands are disabled (set the -enable__queries flag to enable)
o cannot connect to tablet %v: %v

See Also

o vtctl command index

vtctl Replication Graph Command Reference

series: vtetl

The following vtctl commands are available for administering the Replication Graph.
Commands

GetShardReplication Outputs a JSON structure that contains information about the ShardReplication.
Example

Arguments

e <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

130

Errors

o the <cell> and <keyspace/shard> arguments are required for the <GetShardReplication> command This error occurs if
the command is not called with exactly 2 arguments.

See Also

o vtctl command index

vtctl Resharding Throttler Command Reference

series: vtctl

The following vtctl commands are available for administering Resharding Throttler.
Commands

ThrottlerMaxRates Returns the current max rate of all active resharding throttlers on the server.

Example
Flags

Name Type Definition

server string vtworker or vttablet to connect to
Arguments

o <vtworker or vttablet> — Required.

Errors

e the ThrottlerSetMaxRate command does not accept any positional parameters This error occurs if the command is not
called with exactly 0 arguments.

e error creating a throttler client for <server> ‘%v’: %v

o failed to get the throttler rate from <server> ‘%v’: %v

ThrottlerSetMaxRate Sets the max rate for all active resharding throttlers on the server.

Example
Flags

Name Type Definition

server string vtworker or vttablet to connect to
Arguments

131

o <vtworker or vttablet> — Required.
o <rate> — Required.

Errors

e the <rate> argument is required for the <ThrottlerSetMaxRate> command This error occurs if the command is not called

with exactly one argument.

o failed to parse rate ‘%v’ as integer value: %v
e error creating a throttler client for <server> ‘%v’: %v
o failed to set the throttler rate on <server> ‘%v’: %v

GetThrottlerConfiguration Returns the current configuration of the MaxReplicationLag module. If no throttler name is
specified, the configuration of all throttlers will be returned.

Type Definition

string vtworker or vttablet to connect to

Example
Flags
Name
server
Arguments

o <vtworker or vttablet> — Required.
e <throttler name> — Optional.

Errors

¢ the <GetThrottlerConfiguration> command accepts only <throttler name> as optional positional parameter This error

occurs if the command is not called with more than 1 arguments.

e error creating a throttler client for <server> ‘%v’: %v

o failed to get the throttler configuration from <server> ‘%v’: %v

UpdateThrottlerConfiguration Updates the configuration of the MaxReplicationLag module. The configuration must be
specified as protobuf text. If a field is omitted or has a zero value, it will be ignored unless -copy_ zero_ values is specified. If no
throttler name is specified, all throttlers will be updated.

Example
Flags
Name Type Definition
copy__zero_ values Boolean If true, fields with zero values will be
copied as well
server string vtworker or vttablet to connect to
Arguments

132

o <vtworker or vttablet> — Required.
e <throttler name> — Optional.

Errors

o Failed to unmarshal the configuration protobuf text (%v) into a protobuf instance: %v
e error creating a throttler client for <server> ‘%v’: %v
o failed to update the throttler configuration on <server> ‘%v’: %v

ResetThrottlerConfiguration Resets the current configuration of the MaxReplicationLag module. If no throttler name is
specified, the configuration of all throttlers will be reset.

Example
Flags

Name Type Definition

server string vtworker or vttablet to connect to
Arguments

o <vtworker or vttablet> — Required.
e <throttler name> — Optional.

Errors

e the <ResetThrottlerConfiguration> command accepts only <throttler name> as optional positional parameter This error
occurs if the command is not called with more than 1 arguments.

e error creating a throttler client for <server> ‘%v’: %v

o failed to get the throttler configuration from <server> ‘%v’: %v

See Also

¢ vtctl command index

vtctl Schema, Version, Permissions Command Reference

series: vtctl

The following vtctl commands are available for administering Schema, Versions and Permissions.

Commands

GetSchema Displays the full schema for a tablet, or just the schema for the specified tables in that tablet.
Example

Flags

133

Name Type Definition

exclude_ tables string Specifies a comma-separated list of
tables to exclude. Each is either an
exact match, or a regular expression of
the form /regexp/

include-views Boolean Includes views in the output
table_ names_ only Boolean Only displays table names that match
tables string Specifies a comma-separated list of

tables for which we should gather
information. Each is either an exact
match, or a regular expression of the
form /regexp/

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

e the <tablet alias> argument is required for the <GetSchema> command This error occurs if the command is not called
with exactly one argument.

ReloadSchema Reloads the schema on a remote tablet.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

« the <tablet alias> argument is required for the <ReloadSchema> command This error occurs if the command is not called
with exactly one argument.

ReloadSchemaShard Reloads the schema on all the tablets in a shard.

Example

Flags

Name Type Definition

concurrency Int How many tablets to reload in parallel
include master Boolean Include the master tablet

134

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <ReloadSchemaShard> command This error occurs if the command
is not called with exactly one argument.

ReloadSchemaKeyspace Reloads the schema on all the tablets in a keyspace.

Example
Flags
Name Type Definition
concurrency Int How many tablets to reload in parallel
include master Boolean Include the master tablet(s)
Arguments

e <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace
shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

Errors

e the <keyspace> argument is required for the <ReloadSchemaKeyspace> command This error occurs if the command is
not called with exactly one argument.

ValidateSchemaShard Validates that the master schema matches all of the replicas.

Example
Flags
Name Type Definition
exclude_ tables string Specifies a comma-separated list of
tables to exclude. Each is either an
exact match, or a regular expression of
the form /regexp/
include-views Boolean Includes views in the validation
Arguments

135

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <ValidateSchemaShard> command This error occurs if the command
is not called with exactly one argument.

ValidateSchemaKeyspace Validates that the master schema from shard 0 matches the schema on all of the other tablets in
the keyspace.

Example
Flags
Name Type Definition
exclude_ tables string Specifies a comma-separated list of
tables to exclude. Each is either an
exact match, or a regular expression of
the form /regexp/
include-views Boolean Includes views in the validation
Arguments

e <keyspace name> — Required. The name of a sharded database that contains one or more tables. Vitess distributes
keyspace shards into multiple machines and provides an SQL interface to query the data. The argument value must be a
string that does not contain whitespace.

Errors

o the <keyspace name> argument is required for the <ValidateSchemaKeyspace> command This error occurs if the command
is not called with exactly one argument.

ApplySchema Applies the schema change to the specified keyspace on every master, running in parallel on all shards. The
changes are then propagated to replicas via replication. If -allow_long unavailability is set, schema changes affecting a large
number of rows (and possibly incurring a longer period of unavailability) will not be rejected.

Example
Flags
Name Type Definition
allow_long unavailability Boolean Allow large schema changes which
incur a longer unavailability of the
database.
sql string A list of semicolon-delimited SQL
commands

136

Name Type Definition

sql-file string Identifies the file that contains the SQL
commands
wait_ replicas_ timeout Duration The amount of time to wait for replicas
to receive the schema change via
replication.
Arguments

e <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace
shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

Errors

o the <keyspace> argument is required for the command<ApplySchema> command This error occurs if the command is
not called with exactly one argument.

CopySchemaShard Copies the schema from a source shard’s master (or a specific tablet) to a destination shard. The schema
is applied directly on the master of the destination shard, and it is propagated to the replicas through binlogs.

Example
Flags
Name Type Definition
exclude_ tables string Specifies a comma-separated list of
tables to exclude. Each is either an
exact match, or a regular expression of
the form /regexp/
include-views Boolean Includes views in the output
tables string Specifies a comma-separated list of
tables to copy. Each is either an exact
match, or a regular expression of the
form /regexp/
wait_ replicas_ timeout Duration The amount of time to wait for replicas
to receive the schema change via
replication.
Arguments

e <source tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

o <destination keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as
the shard associated with the command. The keyspace must be identified by a string that does not contain whitespace,
while the shard is typically identified by a string in the format <range start>-<range end>.

Errors

137

o the <source keyspace/shard> and <destination keyspace/shard> arguments are both required for the <Copy-
SchemaShard> command. Instead of the <source keyspace/shard> argument, you can also specify <tablet alias> which
refers to a specific tablet of the shard in the source keyspace This error occurs if the command is not called with exactly 2
arguments.

ValidateVersionShard Validates that the master version matches all of the replicas.

Example

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <ValidateVersionShard> command This error occurs if the command
is not called with exactly one argument.

ValidateVersionKeyspace Validates that the master version from shard 0 matches all of the other tablets in the keyspace.

Example

Arguments

e <keyspace name> — Required. The name of a sharded database that contains one or more tables. Vitess distributes
keyspace shards into multiple machines and provides an SQL interface to query the data. The argument value must be a
string that does not contain whitespace.

Errors

¢ the <keyspace name> argument is required for the <ValidateVersionKeyspace> command This error occurs if the command
is not called with exactly one argument.

GetPermissions Displays the permissions for a tablet.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

o the <tablet alias> argument is required for the <GetPermissions> command This error occurs if the command is not
called with exactly one argument.

138

ValidatePermissionsShard Validates that the master permissions match all the replicas.

Example

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <ValidatePermissionsShard> command This error occurs if the com-
mand is not called with exactly one argument.

ValidatePermissionsKeyspace Validates that the master permissions from shard 0 match those of all of the other tablets
in the keyspace.

Example

Arguments

e <keyspace name> — Required. The name of a sharded database that contains one or more tables. Vitess distributes
keyspace shards into multiple machines and provides an SQL interface to query the data. The argument value must be a
string that does not contain whitespace.

Errors

e the <keyspace name> argument is required for the <ValidatePermissionsKeyspace> command This error occurs if the
command is not called with exactly one argument.

GetVSchema Displays the VI'Gate routing schema.

Example

Arguments

o <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace
shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

Errors

e the <keyspace> argument is required for the <GetVSchema> command This error occurs if the command is not called
with exactly one argument.

ApplyVSchema Applies the VT Gate routing schema to the provided keyspace. Shows the result after application.

139

Example

Flags

140

Name Type Definition

cells string If specified, limits the rebuild to the
cells, after upload. Ignored if
skipRebuild is set.

skip_ rebuild Boolean If set, do no rebuild the SrvSchema
objects.
vschema string Identifies the VT Gate routing schema
vschema, file string Identifies the VT Gate routing schema
file
Arguments

o <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace
shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

Errors

o the <keyspace> argument is required for the <ApplyVSchema> command This error occurs if the command is not called
with exactly one argument.
e either the <vschema> or <vschema>File flag must be specified when calling the <ApplyVSchema> command

GetRoutingRules

ApplyRoutingRules {-rules=<rules>
| -rules_file=<rules_file>} [-cells=cl,c2,...] [-skip_rebuild] [-dry-run]

RebuildVSchemaGraph Rebuilds the cell-specific SrvVSchema from the global VSchema objects in the provided cells (or
all cells if none provided).

Example
Flags

Name Type Definition

cells string Specifies a comma-separated list of cells to look for tablets
Errors

¢ <RebuildVSchemaGraph> doesn’t take any arguments This error occurs if the command is not called with exactly 0
arguments.

See Also

e vtctl command index

141

vtct]l Serving Graph Command Reference

series: vtetl

The following vtctl commands are available for administering the Serving Graph.

Commands

GetSrvKeyspaceNames Outputs a list of keyspace names.
Example

Arguments

o <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

Errors

e the <cell> argument is required for the <GetSrvKeyspaceNames> command This error occurs if the command is not
called with exactly one argument.

GetSrvKeyspace Outputs a JSON structure that contains information about the SrvKeyspace.
Example

Arguments

e <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

o <keyspace> — Required. The name of a sharded database that contains one or more tables. Vitess distributes keyspace
shards into multiple machines and provides an SQL interface to query the data. The argument value must be a string that
does not contain whitespace.

Errors

o the <cell> and <keyspace> arguments are required for the <GetSrvKeyspace> command This error occurs if the command
is not called with exactly 2 arguments.

GetSrvVSchema Outputs a JSON structure that contains information about the SrvVSchema.
Example

Arguments

e <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

142

Errors

e the <cell> argument is required for the <GetSrvVSchema> command This error occurs if the command is not called with
exactly one argument.

DeleteSrvVSchema <cell>

See Also

e vtctl command index

vtctl Shard Command Reference

series: vtetl

The following vtctl commands are available for administering shards.

Commands

CreateShard Creates the specified shard.

Example
Flags
Name Type Definition
force Boolean Proceeds with the command even if the
keyspace already exists
parent Boolean Creates the parent keyspace if it
doesn’t already exist
Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <CreateShard> command This error occurs if the command is not
called with exactly one argument.

GetShard Outputs a JSON structure that contains information about the Shard.

143

Example

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <GetShard> command This error occurs if the command is not called
with exactly one argument.

ValidateShard Validates that all nodes that are reachable from this shard are consistent.

Example
Flags
Name Type Definition
ping-tablets Boolean Indicates whether all tablets should be
pinged during the validation process
Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <ValidateShard> command This error occurs if the command is not
called with exactly one argument.

ShardReplicationPositions Shows the replication status of each replica machine in the shard graph. In this case, the status
refers to the replication lag between the master vttablet and the replica vttablet. In Vitess, data is always written to the master
vttablet first and then replicated to all replica vttablets. Output is sorted by tablet type, then replication position. Use ctrl-C
to interrupt command and see partial result if needed.

Example

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

144

Errors

o the <keyspace/shard> argument is required for the <ShardReplicationPositions> command This error occurs if the com-
mand is not called with exactly one argument.

ListShardTablets Lists all tablets in the specified shard.

Example

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <ListShardTablets> command This error occurs if the command is
not called with exactly one argument.

SetShardIsMasterServing <keyspace/shard> <is_master_serving>

SetShardTabletControl Sets the TabletControl record for a shard and type. Only use this for an emergency fix or after a
finished vertical split. The MigrateServedFrom and MigrateServed Type commands set this field appropriately already. Always
specify the blacklisted_ tables flag for vertical splits, but never for horizontal splits.To set the DisableQueryServiceFlag, keep
‘blacklisted__tables’ empty, and set ‘disable__query_service’ to true or false. Useful to fix horizontal splits gone wrong.To change
the blacklisted tables list, specify the ‘blacklisted_ tables’ parameter with the new list. Useful to fix tables that are being blocked
after a vertical split.To just remove the ShardTabletControl entirely, use the ‘remove’ flag, useful after a vertical split is finished
to remove serving restrictions.

Example
Flags
Name Type Definition
blacklisted_ tables string Specifies a comma-separated list of
tables to blacklist (used for vertical
split). Each is either an exact match,
or a regular expression of the form
‘/regexp/’.
cells string Specifies a comma-separated list of
cells to update
disable__query_ service Boolean Disables query service on the provided
nodes. This flag requires
‘blacklisted_tables’ and ‘remove’ to be
unset, otherwise it’s ignored.
remove Boolean Removes cells for vertical splits.

145

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

e <tablet type> — Required. The vttablet’s role. Valid values are:

Errors

backup — A replicated copy of data that is offline to queries other than for backup purposes

batch — A replicated copy of data for OLAP load patterns (typically for MapReduce jobs)

drained — A tablet that is reserved for a background process. For example, a tablet used by a vtworker process, where
the tablet is likely lagging in replication.

experimental — A replicated copy of data that is ready but not serving query traffic. The value indicates a special
characteristic of the tablet that indicates the tablet should not be considered a potential master. Vitess also does not
worry about lag for experimental tablets when reparenting.

master — A primary copy of data

rdonly — A replicated copy of data for OLAP load patterns

replica — A replicated copy of data ready to be promoted to master

restore — A tablet that is restoring from a snapshot. Typically, this happens at tablet startup, then it goes to its right
state.

spare — A replicated copy of data that is ready but not serving query traffic. The data could be a potential master
tablet.

o the <keyspace/shard> and <tablet type> arguments are both required for the <SetShardTabletControl> command This
error occurs if the command is not called with exactly 2 arguments.

UpdateSrvKeyspacePartition [--cells=cl,c2,...] [--remove] <keyspace/shard> <tablet type>

SourceShardDelete Deletes the SourceShard record with the provided index. This is meant as an emergency cleanup function.
It does not call RefreshState for the shard master.

Example

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

e <uid> — Required.

Errors

o the <keyspace/shard> and <uid> arguments are both required for the <SourceShardDelete> command This error occurs
if the command is not called with at least 2 arguments.

SourceShardAdd Adds the SourceShard record with the provided index. This is meant as an emergency function. It does
not call RefreshState for the shard master.

146

Example

Flags
Name Type Definition
key_range string Identifies the key range to use for the
SourceShard
tables string Specifies a comma-separated list of
tables to replicate (used for vertical
split). Each is either an exact match,
or a regular expression of the form
/regexp/
Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

e <uid> — Required.

o <source keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the
shard associated with the command. The keyspace must be identified by a string that does not contain whitespace, while
the shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard>, <uid>, and <source keyspace/shard> arguments are all required for the <SourceShardAdd>
command This error occurs if the command is not called with exactly 3 arguments.

ShardReplicationFix Walks through a ShardReplication object and fixes the first error that it encounters.

Example

Arguments

e <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <cell> and <keyspace/shard> arguments are required for the ShardReplicationRemove command This error occurs if
the command is not called with exactly 2 arguments.

WaitForFilteredReplication Blocks until the specified shard has caught up with the filtered replication of its source shard.

Example

147

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <WaitForFilteredReplication> command This error occurs if the
command is not called with exactly one argument.

RemoveShardCell Removes the cell from the shard’s Cells list.

Example
Flags
Name Type Definition
force Boolean Proceeds even if the cell’s topology

service cannot be reached. The
assumption is that you turned down
the entire cell, and just need to update
the global topo data.

recursive Boolean Also delete all tablets in that cell
belonging to the specified shard.

Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

e <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

Errors

o the <keyspace/shard> and <cell> arguments are required for the <RemoveShardCell> command This error occurs if the
command is not called with exactly 2 arguments.

DeleteShard Deletes the specified shard(s). In recursive mode, it also deletes all tablets belonging to the shard. Otherwise,
there must be no tablets left in the shard.

Example

Flags

148

Name Type Definition

even_if serving Boolean Remove the shard even if it is serving.
Use with caution.
recursive Boolean Also delete all tablets belonging to the
shard.
Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>. To specify multiple values for this
argument, separate individual values with a space.

Errors

o the <keyspace/shard> argument must be used to identify at least one keyspace and shard when calling the <DeleteShard>
command This error occurs if the command is not called with at least one argument.

ListBackups Lists all the backups for a shard.

Example

Errors

« action <ListBackups> requires <keyspace/shard> This error occurs if the command is not called with exactly one argu-
ment.

BackupShard [-allow_master=false] <keyspace/shard>

RemoveBackup Removes a backup for the BackupStorage.

Example

Arguments

e <backup name> — Required.

Errors

« action <RemoveBackup> requires <keyspace/shard> <backup name> This error occurs if the command is not called with
exactly 2 arguments.

InitShardMaster Sets the initial master for a shard. Will make all other tablets in the shard replicas of the provided master.
WARNING: this could cause data loss on an already replicating shard. PlannedReparentShard or EmergencyReparentShard
should be used instead.

149

Example

Flags
Name Type Definition
force Boolean will force the reparent even if the
provided tablet is not a master or the
shard master
wait_ replicas_ timeout Duration time to wait for replicas to catch up in
reparenting
Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

o <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

« action <InitShardMaster> requires <keyspace/shard> <tablet alias> This error occurs if the command is not called with
exactly 2 arguments.
o active reparent commands disabled (unset the -disable_active_reparents flag to enable)

PlannedReparentShard Reparents the shard to a new master that can either be explicitly specified, or chosen by Vitess.
Both the existing master and new master need to be up and running to use this command. If the existing master for the shard
is down, you should use EmergencyReparentShard instead.

If the new_master flag is not provided, Vitess will try to automatically choose a replica to promote to master, avoiding any
replicas specified in the avoid_master flag, if provided. Note that Vitess will not consider any replicas outside the cell
the current master is in for promotion, therefore you must pass the new_master flag if you need to promote a replica in
a different cell from the master. In the automated selection mode Vitess will prefer the most advanced replica for promotion, to
minimize failover time.

Example
Flags
Name Type Definition
avoid__master string alias of a tablet that should not be the
master, i.e. reparent to any replica
other than this one
keyspace_ shard string keyspace/shard of the shard that needs
to be reparented
new__master string alias of a tablet that should be the new
master
wait_ replicas_ timeout Duration time to wait for replicas to catch up in
reparenting

150

Errors

o action <PlannedReparentShard> requires -keyspace_shard=<keyspace/shard> [-new_master=<tablet alias>] [
avoid__master=<tablet alias>] This error occurs if the command is not called with exactly 0 arguments.

o active reparent commands disabled (unset the -disable_ active_reparents flag to enable)

« cannot use legacy syntax and flags -<keyspace_shard> and -<new_ master> for action <PlannedReparentShard> at the
same time

EmergencyReparentShard Reparents the shard to the new master. Assumes the old master is dead and not responding.

Example
Flags
Name Type Definition
keyspace__shard string keyspace/shard of the shard that needs
to be reparented
new__master string alias of a tablet that should be the new
master
wait_ replicas_ timeout Duration time to wait for replicas to catch up in
reparenting
Errors

« action <EmergencyReparentShard> requires -keyspace shard=<keyspace/shard> -new_ master=<tablet alias> This er-
ror occurs if the command is not called with exactly 0 arguments.

« active reparent commands disabled (unset the -disable active reparents flag to enable)

e cannot use legacy syntax and flag -<new_ master> for action <EmergencyReparentShard> at the same time

TabletExternallyReparented Changes metadata in the topology service to acknowledge a shard master change performed
by an external tool. See Reparenting for more information.

Example

Arguments

o <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

o the <tablet alias> argument is required for the <TabletExternallyReparented> command This error occurs if the command
is not called with exactly one argument.

See Also

¢ vtctl command index

151

vtct]l Tablet Command Reference

series: vtetl

The following vtctl commands are available for administering tablets.
Commands

InitTablet Initializes a tablet in the topology.

Example
Flags
Name Type Definition
allow master override Boolean Use this flag to force initialization if a

tablet is created as master, and a
master for the keyspace/shard already
exists. Use with caution.

allow__update Boolean Use this flag to force initialization if a
tablet with the same name already
exists. Use with caution.

db_name override string Overrides the name of the database
that the vttablet uses

grpc_port Int The gRPC port for the vttablet process

hostname string The server on which the tablet is
running

keyspace string The keyspace to which this tablet
belongs

mysql__host string The mysql host for the mysql server

mysql__port Int The mysql port for the mysql server

parent Boolean Creates the parent shard and keyspace
if they don’t yet exist

port Int The main port for the vttablet process

shard string The shard to which this tablet belongs

tags string A comma-separated list of key:value

pairs that are used to tag the tablet

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

e <tablet type> — Required. The vttablet’s role. Valid values are:

— backup — A replicated copy of data that is offline to queries other than for backup purposes

— batch — A replicated copy of data for OLAP load patterns (typically for MapReduce jobs)

— drained — A tablet that is reserved for a background process. For example, a tablet used by a vtworker process, where
the tablet is likely lagging in replication.

— experimental — A replicated copy of data that is ready but not serving query traffic. The value indicates a special
characteristic of the tablet that indicates the tablet should not be considered a potential master. Vitess also does not
worry about lag for experimental tablets when reparenting.

— master — A primary copy of data

— rdonly — A replicated copy of data for OLAP load patterns

152

— replica — A replicated copy of data ready to be promoted to master

— restore — A tablet that is restoring from a snapshot. Typically, this happens at tablet startup, then it goes to its right
state.

— spare — A replicated copy of data that is ready but not serving query traffic. The data could be a potential master
tablet.

Errors

e the <tablet alias> and <tablet type> arguments are both required for the <InitTablet> command This error occurs if
the command is not called with exactly 2 arguments.

GetTablet Outputs a JSON structure that contains information about the Tablet.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

e the <tablet alias> argument is required for the <GetTablet> command This error occurs if the command is not called
with exactly one argument.

IgnoreHealthError Sets the regexp for health check errors to ignore on the specified tablet. The pattern has implicit ~$
anchors. Set to empty string or restart vttablet to stop ignoring anything.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.
o <ignore regexp> — Required.

Errors

e the <tablet alias> and <ignore regexp> arguments are required for the <IgnoreHealthError> command This error occurs
if the command is not called with exactly 2 arguments.

UpdateTablet Addrs Updates the IP address and port numbers of a tablet.

Example

Flags

153

Name Type Definition

grpc-port Int The gRPC port for the vttablet process
hostname string The fully qualified host name of the
server on which the tablet is running.
mysql-port Int The mysql port for the mysql daemon
mysql__host string The mysql host for the mysql server
vt-port Int The main port for the vttablet process
Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

« the <tablet alias> argument is required for the <UpdateTabletAddrs> command This error occurs if the command is not
called with exactly one argument.

DeleteTablet Deletes tablet(s) from the topology.

Example
Flags
Name Type Definition
allow master Boolean Allows for the master tablet of a shard
to be deleted. Use with caution.
Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>. To specify multiple values for this argument, separate individual values with a space.

Errors

e the <tablet alias> argument must be used to specify at least one tablet when calling the <DeleteTablet> command This
error occurs if the command is not called with at least one argument.

SetReadOnly Sets the tablet as read-only.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

154

Errors
o the <tablet alias> argument is required for the <SetReadOnly> command This error occurs if the command is not called

with exactly one argument.
o failed reading tablet %v: %v

SetReadWrite Sets the tablet as read-write.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors
e the <tablet alias> argument is required for the <SetReadWrite> command This error occurs if the command is not called

with exactly one argument.
o failed reading tablet %v: %v

StartReplication Starts replication on the specified tablet.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors
e action <StartReplication> requires <tablet alias> This error occurs if the command is not called with exactly one argu-

ment.
o failed reading tablet %v: %v

StopReplication Stops replication on the specified tablet.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

e action <StopReplication> requires <tablet alias> This error occurs if the command is not called with exactly one argument.
o failed reading tablet %v: %v

155

ChangeTabletType Changes the db type for the specified tablet, if possible. This command is used primarily to arrange
replicas, and it will not convert a master.NOTE: This command automatically updates the serving graph.

Example
Flags

Name Type Definition

dry-run Boolean Lists the proposed change without actually executing it
Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

e <tablet type> — Required. The vttablet’s role. Valid values are:

Errors

backup — A replicated copy of data that is offline to queries other than for backup purposes

batch — A replicated copy of data for OLAP load patterns (typically for MapReduce jobs)

drained — A tablet that is reserved for a background process. For example, a tablet used by a vtworker process, where
the tablet is likely lagging in replication.

experimental — A replicated copy of data that is ready but not serving query traffic. The value indicates a special
characteristic of the tablet that indicates the tablet should not be considered a potential master. Vitess also does not
worry about lag for experimental tablets when reparenting.

master — A primary copy of data

rdonly — A replicated copy of data for OLAP load patterns

replica — A replicated copy of data ready to be promoted to master

restore — A tablet that is restoring from a snapshot. Typically, this happens at tablet startup, then it goes to its right
state.

spare — A replicated copy of data that is ready but not serving query traffic. The data could be a potential master
tablet.

o the <tablet alias> and <db type> arguments are required for the <ChangeTabletType> command This error occurs if
the command is not called with exactly 2 arguments.

o failed reading tablet %v: %v

e invalid type transition %v: %v -> %v

Ping hecks that the specified tablet is awake and responding to RPCs. This command can be blocked by other in-flight
operations.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

156

Errors

e the <tablet alias> argument is required for the <Ping> command This error occurs if the command is not called with
exactly one argument.

RefreshState Reloads the tablet record on the specified tablet.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

e the <tablet alias> argument is required for the <RefreshState> command This error occurs if the command is not called
with exactly one argument.

RefreshStateByShard Runs ‘RefreshState’ on all tablets in the given shard.

Example
Flags
Name Type Definition
cells string Specifies a comma-separated list of
cells whose tablets are included. If
empty, all cells are considered.
Arguments

o <keyspace/shard> — Required. The name of a sharded database that contains one or more tables as well as the shard
associated with the command. The keyspace must be identified by a string that does not contain whitespace, while the
shard is typically identified by a string in the format <range start>-<range end>.

Errors

o the <keyspace/shard> argument is required for the <RefreshStateByShard> command This error occurs if the command
is not called with exactly one argument.

RunHealthCheck Runs a health check on a remote tablet.

Example

157

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

e the <tablet alias> argument is required for the <RunHealthCheck> command This error occurs if the command is not
called with exactly one argument.

IgnoreHealthError Sets the regexp for health check errors to ignore on the specified tablet. The pattern has implicit ~$
anchors. Set to empty string or restart vttablet to stop ignoring anything.

Example

Arguments
e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell

name>-<uid>.
e <ignore regexp> — Required.

Errors

e the <tablet alias> and <ignore regexp> arguments are required for the <IgnoreHealthError> command This error occurs
if the command is not called with exactly 2 arguments.

Sleep Blocks the action queue on the specified tablet for the specified amount of time. This is typically used for testing.

Example

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

e <duration> — Required. The amount of time that the action queue should be blocked. The value is a string that contains
a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as “300ms” or “1h45m”.
See the definition of the Go language’s ParseDuration function for more details. Note that, in practice, the value should
be a positively signed value.

Errors

e the <tablet alias> and <duration> arguments are required for the <Sleep> command This error occurs if the command
is not called with exactly 2 arguments.

ExecuteHook Runs the specified hook on the given tablet. A hook is a script that resides in the SVTROOT /vthook directory.
You can put any script into that directory and use this command to run that script.For this command, the param=value
arguments are parameters that the command passes to the specified hook.

Example

158

Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

e <hook name> — Required.

e <paraml=valuel> <param2=value2> . — Optional.

Errors

o the <tablet alias> and <hook name> arguments are required for the <ExecuteHook> command This error occurs if the
command is not called with at least 2 arguments.

ExecuteFetchAsApp [-max_rows=10000] [-json] [-use_pool] <tablet alias> <sql command>

ExecuteFetchAsDba Runs the given SQL command as a DBA on the remote tablet.

Example
Flags
Name Type Definition
disable_ binlogs Boolean Disables writing to binlogs during the
query
json Boolean Output JSON instead of
human-readable table
max_ TOws Int Specifies the maximum number of rows
to allow in reset
reload schema Boolean Indicates whether the tablet schema
will be reloaded after executing the
SQL command. The default value is
false, which indicates that the tablet
schema will not be reloaded.
Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.
e <sql command> — Required.

Errors

o the <tablet alias> and <sql command> arguments are required for the <ExecuteFetchAsDba> command This error occurs
if the command is not called with exactly 2 arguments.

VReplicationExec [-json] <tablet alias> <sql command>

159

Backup Stops mysqld and uses the BackupStorage service to store a new backup. This function also remembers if the tablet
was replicating so that it can restore the same state after the backup completes.

Example
Flags
Name Type Definition
concurrency Int Specifies the number of
compression/checksum jobs to run
simultaneously
Arguments

e <tablet alias> — Required. A Tablet Alias uniquely identifies a vttablet. The argument value is in the format <cell
name>-<uid>.

Errors

e the <Backup> command requires the <tablet alias> argument This error occurs if the command is not called with exactly
one argument.

ChangeSlaveType Changes the db type for the specified tablet, if possible. This command is used primarily to arrange
replicas, and it will not convert a master.NOTE: This command automatically updates the serving graph.

Example

Flags

Name Type Definition

dry-run Boolean Lists the proposed change without actually executing it

RestoreFromBackup Stops mysqld and restores the data from the latest backup.

Example

Errors

¢ the <RestoreFromBackup> command requires the <tablet alias> argument This error occurs if the command is not called
with exactly one argument.

ReparentTablet Reparent a tablet to the current master in the shard. This only works if the current replication position
matches the last known reparent action.

Example

160

Errors

« action <ReparentTablet> requires <tablet alias> This error occurs if the command is not called with exactly one argument.
o active reparent commands disabled (unset the -disable_ active_reparents flag to enable)

See Also

o vtctl command index

vtctl Topo Command Reference

series: vtctl

The following vtctl commands are available for administering Topology Services.
Commands

TopoCat Retrieves the file(s) at <path> from the topo service, and displays it. It can resolve wildcards, and decode the
proto-encoded data.

Example
Flags
Name Type Definition
cell string topology cell to cat the file from. Defaults to global cell.
decode_proto Boolean decode proto files and display them as text
long Boolean long listing.
Arguments

e <cell> — Required. A cell is a location for a service. Generally, a cell resides in only one cluster. In Vitess, the terms “cell”
and “data center” are interchangeable. The argument value is a string that does not contain whitespace.

e <path> — Required.

e <path>. — Optional.

Errors

e <TopoCat>: no path specified This error occurs if the command is not called with at least one argument.
o <TopoCat>: invalid wildcards: %v
e <TopoCat>: some paths had errors

TopoCp [-cell <cell>] [-to_topo] <src> <dst>

See Also

¢ vtctl command index

161

vtct]l Workflow Command Reference

series: vtetl

The following vtctl commands are available for administering workflows.

Commands

WorkflowCreate Creates the workflow with the provided parameters. The workflow is also started, unless -skip_ start is
specified.

Example
Flags

Name Type Definition

skip_start Boolean If set, the workflow will not be started.
Arguments

o <factoryName> — Required.

Errors
e the <factoryName> argument is required for the <WorkflowCreate> command This error occurs if the command is not

called with at least one argument.
¢ no workflow.Manager registered

WorkflowStart Starts the workflow.

Example

Errors
e the <uuid> argument is required for the <WorkflowStart> command This error occurs if the command is not called with

exactly one argument.
e no workflow.Manager registered

WorkflowStop Stops the workflow.

Example

Errors
e the <uuid> argument is required for the <WorkflowStop> command This error occurs if the command is not called with

exactly one argument.
o no workflow.Manager registered

162

WorkflowDelete Deletes the finished or not started workflow.

Example

Errors

e the <uuid> argument is required for the <WorkflowDelete> command This error occurs if the command is not called with
exactly one argument.
o no workflow.Manager registered

WorkflowWait <uuid>

WorkflowTree Displays a JSON representation of the workflow tree.

Example

Errors

e the <WorkflowTree> command takes no parameter This error occurs if the command is not called with exactly 0 arguments.
e no workflow.Manager registered

WorkflowAction <path> <name>

See Also

o vtctl command index

vtetl

description: vtctl Command Index

vtctl is a command-line tool used to administer a Vitess cluster. It is available as both a standalone tool (vtctl) and client-
server (vtctlclient in combination with vtctld). Using client-server is recommended, as it provides an additional layer of
security when using the client remotely.

Commands

Tablets

163

ShardReplicationPositions

ListShardTablets

SetShardIsMasterServing

SetShardTabletControl

UpdateSrvKeyspacePartition

SourceShardDelete

Name Example Usage

InitTablet InitTablet [-allow_update] [-allow_different_shard]
[-allow_master_override] [-parent] [-db_name_override=<db
name>] [-hostname=<hostname>] [-mysql_port=<port>]
[-port=<port>] [-grpc_port=<port>]
[-tags=tagl:valuel,tag2:value2] -keyspace=<keyspace>
-shard=<shard> <tablet alias> <tablet type>

GetTablet GetTablet <tablet alias>

UpdateTabletAddrs UpdateTabletAddrs [-hostname <hostname>] [-ip-addr <ip addr>]
[-mysql-port <mysql port>] [-vt-port <vt port>] [-grpc-port
<grpc port>] <tablet alias>

DeleteTablet DeleteTablet [-allow_master] <tablet alias> ...

SetReadOnly SetReadOnly <tablet alias>

SetReadWrite SetReadWrite <tablet alias>

StartReplication StartReplication <tablet alias>

StartSlave DEPRECATED -- Use StartReplication <tablet alias>

StopReplication StopReplication <tablet alias>

StopSlave DEPRECATED -- Use StopReplication <tablet alias>

ChangeTabletType ChangeTabletType [-dry-run] <tablet alias> <tablet type>

ChangeSlaveType DEPRECATED -- Use ChangeTabletType [-dry-run] <tablet alias>
<tablet type>

Ping Ping <tablet alias>

RefreshState RefreshState <tablet alias>

RefreshStateByShard RefreshStateByShard [-cells=cl,c2,...] <keyspace/shard>

RunHealthCheck RunHealthCheck <tablet alias>

IgnoreHealthError IgnoreHealthError <tablet alias> <ignore regexp>

Sleep Sleep <tablet alias> <duration>

ExecuteHook ExecuteHook <tablet alias> <hook name> [<paraml=valuel>
<param2=value2> ...]

ExecuteFetchAsApp ExecuteFetchAsApp [-max_rows=10000] [-json] [-use_pool]
<tablet alias> <sql command>

ExecuteFetchAsDba ExecuteFetchAsDba [-max_rows=10000] [-disable_binlogs] [-json]
<tablet alias> <sql command>

VReplicationExec VReplicationExec [-json] <tablet alias> <sql command>

Backup Backup [-concurrency=4] [-allow_master=false] <tablet alias>

RestoreFromBackup RestoreFromBackup <tablet alias>

ReparentTablet ReparentTablet <tablet alias>

Shards

Name Example Usage

CreateShard CreateShard [-force] [-parent] <keyspace/shard>

GetShard GetShard <keyspace/shard>

ValidateShard ValidateShard [-ping-tablets] <keyspace/shard>

ShardReplicationPositions <keyspace/shard>

ListShardTablets <keyspace/shard>

SetShardIsMasterServing <keyspace/shard> <is_master_serving>
SetShardTabletControl [--cells=cil,c2,...]
[--blacklisted_tables=t1,t2,...] [--remove]
[--disable_query_service] <keyspace/shard> <tablet type>
UpdateSrvKeyspacePartition [--cells=cl,c2,...] [--remove]
<keyspace/shard> <tablet type>

SourceShardDelete <keyspace/shard> <uid>

164

Name Example Usage

SourceShardAdd SourceShardAdd [--key_range=<keyrange>]
[--tables=<tablel,table2,...>] <keyspace/shard> <uid> <source
keyspace/shard>

ShardReplicationFix ShardReplicationFix <cell> <keyspace/shard>

WaitForFilteredReplication

RemoveShardCell
DeleteShard

ListBackups
BackupShard
RemoveBackup

InitShardMaster

PlannedReparentShard

EmergencyReparentShard

TabletExternallyReparented

WaitForFilteredReplication [-max_delay <max_delay, default
30s>] <keyspace/shard>

RemoveShardCell [-force] [-recursive] <keyspace/shard> <cell>
DeleteShard [-recursive] [-even_if_serving] <keyspace/shard>

ListBackups <keyspace/shard>

BackupShard [-allow_master=false] <keyspace/shard>
RemoveBackup <keyspace/shard> <backup name>
InitShardMaster [-force] [-wait_replicas_timeout=<duration>]
<keyspace/shard> <tablet alias>

PlannedReparentShard -keyspace_shard=<keyspace/shard>
[-new_master=<tablet alias>] [-avoid_master=<tablet alias>]
[-wait_replicas_timeout=<duration>]

EmergencyReparentShard -keyspace_shard=<keyspace/shard>
-new_master=<tablet alias>

TabletExternallyReparented <tablet alias>

SetKeyspaceShardingInfo
SetKeyspaceServedFrom
RebuildKeyspaceGraph
ValidateKeyspace
Reshard

MoveTables

DropSources

CreateLookupVindex

ExternalizeVindex
Materialize

Keyspaces

Name Example Usage

CreateKeyspace CreateKeyspace [-sharding_column_name=name]
[-sharding_ column_type=type]
[-served_from=tablettypel:ksl,tablettype2:ks2,...] [-force]
[-keyspace_type=type] [-base_keyspace=base_keyspace]
[-snapshot_time=time] <keyspace name>

DeleteKeyspace DeleteKeyspace [-recursive] <keyspace>

RemoveKeyspaceCell RemoveKeyspaceCell [-force] [-recursive] <keyspace> <cell>

GetKeyspace GetKeyspace <keyspace>

GetKeyspaces GetKeyspaces

SetKeyspaceShardingInfo [-force] <keyspace name> [<column
name>] [<column type>]

SetKeyspaceServedFrom [-source=<source keyspace name>]
[-remove] [-cells=cl,c2,...] <keyspace name> <tablet type>
RebuildKeyspaceGraph [-cells=cl,c2,...] <keyspace>
ValidateKeyspace [-ping-tablets] <keyspace name>

Reshard [-skip_schema_copy] <keyspace.workflow>
<source_shards> <target_shards>

MoveTables [-cell=<cell>]
[-tablet_types=<source_tablet_types>] -workflow=<workflow>
<source_keyspace> <target_keyspace> <table_specs>
DropSources [-dry_run] <keyspace.workflow>
CreateLookupVindex [-cell=<cell>]
[-tablet_types=<source_tablet_types>] <keyspace> <json_spec>
ExternalizeVindex <keyspace>.<vindex>

Materialize <json_spec>, example : '{"workflow": "aaa",
"source_keyspace": "source", "target_keyspace": "target",
"table_settings": [{"target_table": "customer",
"source_expression": "select * from customer", "create_ddl":
Ilcopyll}]}l

165

Name Example Usage
SplitClone SplitClone <keyspace> <from_shards> <to_shards>
VerticalSplitClone VerticalSplitClone <from_keyspace> <to_keyspace> <tables>
VDiff VDiff [-source_cell=<cell>] [-target_cell=<cell>]
[-tablet_types=replical [-filtered_replication_wait_time=30s]
<keyspace.workflow>
MigrateServed Types MigrateServedTypes [-cells=cl,c2,...] [-reverse]
[-skip-refresh-state] <keyspace/shard> <served tablet type>
MigrateServedFrom MigrateServedFrom [-cells=cl,c2,...] [-reverse] <destination
keyspace/shard> <served tablet type>
SwitchReads SwitchReads [-cells=c1,c2,...] [-reverse]
-tablet_type={replicalrdonly} [-dry-run] <keyspace.workflow>
SwitchWrites SwitchWrites [-filtered_replication_wait_time=30s] [-cancell]
[-reverse_replication=false] [-dry-run] <keyspace.workflow>
CancelResharding CancelResharding <keyspace/shard>
ShowResharding ShowResharding <keyspace/shard>
FindAllShardsInKeyspace FindAllShardsInKeyspace <keyspace>
WaitForDrain WaitForDrain [-timeout <duration>] [-retry_delay <duration>]
[-initial_wait <duration>] <keyspace/shard> <served tablet
type>
Generic
Name Example Usage
Validate Validate [-ping-tablets]
ListAllTablets ListAllTablets <cell namel>, <cell name2>,
ListTablets ListTablets <tablet alias> ...
Help Help [command name]

Schema, Version, Permissions

Name Example Usage

GetSchema GetSchema [-tables=<tablel>,<table2>,...]
[-exclude_tables=<tablel>,<table2>,...] [-include-views]
<tablet alias>

ReloadSchema ReloadSchema <tablet alias>

ReloadSchemaShard ReloadSchemaShard [-concurrency=10] [-include_master=false]
<keyspace/shard>

ReloadSchemaKeyspace ReloadSchemaKeyspace [-concurrency=10] [-include_master=false]
<keyspace>

ValidateSchemaShard ValidateSchemaShard [-exclude_tables=''] [-include-views]
<keyspace/shard>

ValidateSchemaKeyspace

ApplySchema

CopySchemaShard

ValidateVersionShard

ValidateSchemaKeyspace [-exclude_tables=''] [-include-views]
<keyspace name>

ApplySchema [-allow_long_unavailability]
[-wait_replicas_timeout=10s] {-sql=<sql> ||
-sql-file=<filename>} <keyspace>

CopySchemaShard [-tables=<tablel>,<table2>,...]
[-exclude_tables=<tablel>,<table2>,...] [-include-views]
[-skip-verify] [-wait_replicas_timeout=10s] {<source
keyspace/shard> || <source tablet alias>} <destination
keyspace/shard>

ValidateVersionShard <keyspace/shard>

166

Name

Example Usage

ValidateVersionKeyspace
GetPermissions
ValidatePermissionsShard
ValidatePermissionsKeyspace
GetVSchema

ApplyVSchema

GetRoutingRules
ApplyRoutingRules

RebuildVSchemaGraph

ValidateVersionKeyspace <keyspace name>

GetPermissions <tablet alias>

ValidatePermissionsShard <keyspace/shard>
ValidatePermissionsKeyspace <keyspace name>

GetVSchema <keyspace>

ApplyVSchema {-vschema=<vschema> || -vschema_file=<vschema
file> || -sql=<sql> || -sql_file=<sql file>}
[-cells=c1,c2,...] [-skip_rebuild] [-dry-run] <keyspace>
GetRoutingRules

ApplyRoutingRules {-rules=<rules> || -rules_file=<rules_file>}
[-cells=c1,c2,...] [-skip_rebuild] [-dry-run]
RebuildVSchemaGraph [-cells=cl,c2,...]

Serving Graph

Name

Example Usage

GetSrvKeyspaceNames GetSrvKeyspaceNames <cell>

GetSrvKeyspace
GetSrvVSchema

GetSrvKeyspace <cell> <keyspace>
GetSrvVSchema <cell>

DeleteSrvVSchema DeleteSrvVSchema <cell>

Replication Graph

Name

Example Usage

GetShardReplication

GetShardReplication <cell> <keyspace/shard>

Cells
Name Example Usage
AddCelllnfo AddCellInfo [-server_address <addr>] [-root <root>] <cell>
UpdateCelllnfo UpdateCellInfo [-server_address <addr>] [-root <root>] <cell>
DeleteCelllnfo DeleteCellInfo [-force] <cell>
GetCelllnfoNames GetCellInfoNames
GetCelllnfo GetCellInfo <cell>
CellsAliases
Name Example Usage
AddCellsAlias AddCellsAlias [-cells <cell,cell2...>] <alias>
UpdateCellsAlias UpdateCellsAlias [-cells <cell,cell2,...>] <alias>
DeleteCellsAlias DeleteCellsAlias <alias>
GetCellsAliases GetCellsAliases
Queries

167

Name

Example Usage

VtGateExecute VtGateExecute -server <vtgate> [-bind_variables <JSON map>]
[-keyspace <default keyspace>] [-tablet_type <tablet type>]
[-options <proto text options>] [-json] <sql>

VtTabletExecute VtTabletExecute [-username <TableACL user>] [-transaction_id
<transaction_id>] [-options <proto text options>] [-json]
<tablet alias> <sql>

VtTabletBegin VtTabletBegin [-username <TableACL user>] <tablet alias>

VtTabletCommit VtTabletCommit [-username <TableACL user>] <transaction_id>

VtTabletRollback VtTabletRollback [-username <TableACL user>] <tablet alias>
<transaction_id>

VtTabletStreamHealth VtTabletStreamHealth [-count <count, default 1>] <tablet alias>

Resharding Throttler

Name Example Usage
ThrottlerMaxRates ThrottlerMaxRates —-server <vtworker or vttablet>
ThrottlerSetMaxRate ThrottlerSetMaxRate -server <vtworker or vttablet> <rate>

GetThrottlerConfiguration

UpdateThrottlerConfiguration

Reset ThrottlerConfiguration

GetThrottlerConfiguration -server <vtworker or vttablet>
[<throttler name>]

UpdateThrottlerConfiguration -server <vtworker or vttablet>
[-copy_zero_values] "<configuration protobuf text>"
[<throttler name>]

ResetThrottlerConfiguration -server <vtworker or vttablet>
[<throttler name>]

Topo
Name Example Usage
TopoCat TopoCat [-cell <cell>] [-decode_proto] [-decode_proto_json]
[-long] <path> [<path>...]
TopoCp TopoCp [-cell <cell>] [-to_topo] <src> <dst>
Workflows
Name Example Usage
WorkflowCreate WorkflowCreate [-skip_start] <factoryName> [parameters...]
WorkflowStart WorkflowStart <uuid>
WorkflowStop WorkflowStop <uuid>
WorkflowDelete WorkflowDelete <uuid>
WorkflowWait WorkflowWait <uuid>
WorkflowTree WorkflowTree
WorkflowAction WorkflowAction <path> <name>
Options

The following global options apply to vtctl:

168

Name Type Definition

-alsologtostderr log to standard error as well as files

-app__idle_ timeout duration Idle timeout for app connections (default 1mOs)

-app__pool_size int Size of the connection pool for app connections (default 40)

- string Path to a file containing the Azure Storage account key; if this flag is unset,

azblob_backup_ account_ key_file

- string
azblob__backup_ account_ name

- string
azblob__backup_ container name
-azblob_backup_ parallelism int

-azblob_ backup_ storage_root string

- string
backup_ engine implementation
-backup__storage_ block_ size int
-backup_ storage_compress

-backup_ storage_hook string
- string
backup_ storage implementation

- int
backup__storage number_ blocks
-binlog_ player_ protocol string

binlog_use_v3_resharding mode
-ceph_ backup_ storage_ config string

-consul auth static_file string
-cpu__profile string
-datadog-agent-host string
-datadog-agent-port string
-db-credentials-file string
-db-credentials-server string
-dba_ idle timeout duration
-dba_ pool_size int
-detach

-disable_ active reparents

- duration

the environment variable VI _AZBLOB_ ACCOUNT KEY will be used as
the key itself (NOT a file path)

Azure Storage Account name for backups; if this flag is unset, the
environment variable VI AZBLOB ACCOUNT_ NAME will be used
Azure Blob Container Name

Azure Blob operation parallelism (requires extra memory when increased)
(default 1)

Root prefix for all backup-related Azure Blobs; this should exclude both
initial and trailing ¢/’ (e.g. just ‘a/b’ not ‘/a/b/’)

Specifies which implementation to use for creating new backups (builtin or
xtrabackup). Restores will always be done with whichever engine created a
given backup. (default “builtin”)

if backup_ storage compress is true, backup_ storage block_size sets the
byte size for each block while compressing (default is 250000). (default
250000)

if set, the backup files will be compressed (default is true). Set to false for
instance if a backup_storage hook is specified and it compresses the data.
(default true)

if set, we send the contents of the backup files through this hook.

which implementation to use for the backup storage feature

if backup_ storage compress is true, backup_ storage_ number_ blocks sets
the number of blocks that can be processed, at once, before the writer
blocks, during compression (default is 2). It should be equal to the number
of CPUs available for compression (default 2)

the protocol to download binlogs from a vttablet (default “grpc”)

True iff the binlog streamer should use V3-style sharding, which doesn’t
require a preset sharding key column. (default true)

Path to JSON config file for ceph backup storage (default
“ceph__backup__config.json”)

JSON File to read the topos/tokens from.

write cpu profile to file

host to send spans to. if empty, no tracing will be done

port to send spans to. if empty, no tracing will be done

db credentials file; send SIGHUP to reload this file

db credentials server type (use ‘file’ for the file implementation) (default
“ﬁle”)

Idle timeout for dba connections (default 1m0s)

Size of the connection pool for dba connections (default 20)

detached mode - run vtcl detached from the terminal

if set, do not allow active reparents. Use this to protect a cluster using
external reparents.

the replication lag that is considered too high when selecting the minimum

discovery__high_replication_lag minimum_ serwimgyttablets for serving (default 2h0m0s)

- duration
discovery_ low_ replication_ lag

-emit_ stats

-enable-consolidator
-enable-consolidator-replicas

the replication lag that is considered low enough to be healthy (default 30s)
true iff we should emit stats to push-based monitoring/stats backends

This option enables the query consolidator. (default true)
This option enables the query consolidator only on replicas.

169

Name

Type

Definition

-enable-query-plan-field-caching

-enable-tx-throttler
-enable_hot_ row_ protection

enable hot_ row_ protection_ dry_run

-enable__queries

-enable transaction_ limit

enable_ transaction_ limit_ dry_ru
-enforce strict_ trans tables

n

-file__backup_ storage_root string

-gcs_ backup_ storage bucket string
-gecs_backup_storage root string
-grpc_auth__mode string

- string
grpc_auth_mtls_allowed_ substrings

- string
grpc_auth_ static_ client_ creds

- string
grpc_auth_static_ password_ file

-grpc_ca string
-grpc__cert string
-grpc__compression string
-grpc__enable_ tracing

- int
grpc_initial _conn_ window__ size
-grpc__initial _window__size int

-grpc_ keepalive_ time duration
-grpc__keepalive_ timeout duration
-grpc__key string
-grpc_max_ connection_ age duration
- duration
grpc_max__connection_age grace
-grpc_max_ message_ size int
-grpc__port int

-grpc_ prometheus

- int

grpc_server_initial conn_ window__ size

grpc_server_initial window_ size

int

This option fetches & caches fields (columns) when storing query plans
(default true)

If true replication-lag-based throttling on transactions will be enabled.

If true, incoming transactions for the same row (range) will be queued and
cannot consume all txpool slots.

If true, hot row protection is not enforced but logs if transactions would
have been queued.

if set, allows vtgate and vttablet queries. May have security implications, as
the queries will be run from this process.

If true, limit on number of transactions open at the same time will be
enforced for all users. User trying to open a new transaction after
exhausting their limit will receive an error immediately, regardless of
whether there are available slots or not.

If true, limit on number of transactions open at the same time will be
tracked for all users, but not enforced.

If true, vttablet requires MySQL to run with STRICT_TRANS_TABLES
or STRICT ALL_TABLES on. It is recommended to not turn this flag off.
Otherwise MySQL may alter your supplied values before saving them to the
database. (default true)

root directory for the file backup storage

Google Cloud Storage bucket to use for backups

root prefix for all backup-related object names

Which auth plugin implementation to use (eg: static)

List of substrings of at least one of the client certificate names (separated by
colon).

when using grpc_static_auth in the server, this file provides the credentials
to use to authenticate with server

JSON File to read the users/passwords from.

ca to use, requires TLS, and enforces client cert check
certificate to use, requires grpc_ key, enables TLS

how to compress gRPC, default: nothing, supported: snappy
Enable GRPC tracing

grpc initial connection window size

grpc initial window size

After a duration of this time if the client doesn’t see any activity it pings
the server to see if the transport is still alive. (default 10s)

After having pinged for keepalive check, the client waits for a duration of
Timeout and if no activity is seen even after that the connection is closed.
(default 10s)

key to use, requires grpc_ cert, enables TLS

Maximum age of a client connection before GoAway is sent. (default
2562047h47m16.854775807s)

Additional grace period after grpc_max_ connection_ age, after which
connections are forcibly closed. (default 2562047h47m16.854775807s)
Maximum allowed RPC message size. Larger messages will be rejected by
gRPC with the error ‘exceeding the max size’. (default 16777216)

Port to listen on for gRPC calls

Enable gRPC monitoring with Prometheus

grpc server initial connection window size

grpc server initial window size

170

Name Type

Definition

- duration

grpc server minimum keepalive time (default 5m0s)

grpc_server_keepalive_enforcement_ policy__min_ time

grpc server permit client keepalive pings even when there are no active

grpc_server_ keepalive_enforcement_ policy ptreaitis WiRRRGIsf) stream

-heartbeat__enable

-heartbeat interval duration
_ int

If true, vttablet records (if master) or checks (if replica) the current time of
a replication heartbeat in the table _vt.heartbeat. The result is used to
inform the serving state of the vttablet via healthchecks.

How frequently to read and write replication heartbeat. (default 1s)
Number of concurrent transactions let through to the txpool/MySQL for

hot__row__protection__concurrent__ transactionghe same hot row. Should be > 1 to have enough ‘ready’ transactions in

- int

MySQL and benefit from a pipelining effect. (default 5)
Global queue limit across all row (ranges). Useful to prevent that the queue

hot_ row__protection_max_ global _queue_ sizean grow unbounded. (default 1000)

_ int
hot_ row_ protection__max_ queue_ size

-jaeger-agent-host string

-keep__logs duration
-keep__logs_ by mtime duration
-lameduck-period duration

legacy replication_lag algorithm

-log_ backtrace_ at value
-log_ dir string
-log_err_ stacks

-log_rotate max_ size uint
-logtostderr

-master__connect_ retry duration
-mem-profile-rate int

- int
min_number_serving vttablets
-mutex-profile-fraction int

- string
mysql_auth_ server_ static_ file

- string
mysql_auth_server_static_ string

- duration
mysql_auth_ static_ reload_ interval

- string
mysql_ clientcert__auth_method
-mysql_server_flush_ delay duration
-mysqlctl_client_ protocol string
-mysqlctl_mycnf template string
-mysqlctl__socket string
-onterm__timeout duration
-pid_file string

- duration
pool hostname_ resolve interval
-purge__logs__interval duration
-query-log-stream-handler string

Maximum number of BeginExecute RPCs which will be queued for the
same row (range). (default 20)

host and port to send spans to. if empty, no tracing will be done

keep logs for this long (using ctime) (zero to keep forever)

keep logs for this long (using mtime) (zero to keep forever)

keep running at least this long after SIGTERM before stopping (default
50ms)

use the legacy algorithm when selecting the vttablets for serving (default
true)

when logging hits line file:N, emit a stack trace

If non-empty, write log files in this directory

log stack traces for errors

size in bytes at which logs are rotated (glog.MaxSize) (default 1887436800)
log to standard error instead of files

how long to wait in between replica reconnect attempts. Only precise to the
second. (default 10s)

profile every n bytes allocated (default 524288)

the minimum number of vttablets that will be continue to be used even with
low replication lag (default 2)

profile every n mutex contention events (see
runtime.SetMutexProfileFraction)

JSON File to read the users/passwords from.

JSON representation of the users/passwords config.
Ticker to reload credentials

client-side authentication method to use. Supported values:

mysql clear_password, dialog. (default “mysql_clear password”)

Delay after which buffered response will flushed to client. (default 100ms)
the protocol to use to talk to the mysqlctl server (default “grpc”)
template file to use for generating the my.cnf file during server init

socket file to use for remote mysqlctl actions (empty for local actions)
wait no more than this for OnTermSync handlers before stopping (default
10s)

If set, the process will write its pid to the named file, and delete it on
graceful shutdown.

if set force an update to all hostnames and reconnect if changed, defaults to
0 (disabled)

how often try to remove old logs (default 1h0mOs)

URL handler for streaming queries log (default “/debug/querylog”)

171

Name Type Definition

-querylog-filter-tag string string that must be present in the query as a comment for the query to be
logged, works for both vtgate and vttablet

-querylog-format string format for query logs (“text” or “json”) (default “text”)

-queryserver-config-acl-exempt- string an acl that exempt from table acl checking (this acl is free to access any

acl vitess tables).

-queryserver-config-enable- If this flag is enabled, tabletserver will emit monitoring metrics and let the

table-acl-dry-run request pass regardless of table acl check results

-queryserver-config-idle-timeout int query server idle timeout (in seconds), vttablet manages various mysql
connection pools. This config means if a connection has not been used in
given idle timeout, this connection will be removed from pool. This
effectively manages number of connection objects and optimize the pool
performance. (default 1800)

-queryserver-config-max-dml- int query server max dml rows per statement, maximum number of rows

TOWS allowed to return at a time for an update or delete with either 1) an
equality where clauses on primary keys, or 2) a subselect statement. For
update and delete statements in above two categories, vttablet will split the
original query into multiple small queries based on this configuration value.

-queryserver-config-max-result- int query server max result size, maximum number of rows allowed to return

size from vttablet for non-streaming queries. (default 10000)

-queryserver-config-message- int DEPRECATED: Unused.

conn-pool-prefill-parallelism

-queryserver-config-message- int DEPRECATED

conn-pool-size

-queryserver-config-message- int query server message postpone cap is the maximum number of messages

postpone-cap that can be postponed at any given time. Set this number to substantially
lower than transaction cap, so that the transaction pool isn’t exhausted by
the message subsystem. (default 4)

-queryserver-config- query server pass through all dml statements without rewriting

passthrough-dmls

-queryserver-config-pool-prefill- int query server read pool prefill parallelism, a non-zero value will prefill the

parallelism pool using the specified parallism.

-queryserver-config-pool-size int query server read pool size, connection pool is used by regular queries (non
streaming, not in a transaction) (default 16)

-queryserver-config-query- int query server query cache size, maximum number of queries to be cached.

cache-size vttablet analyzes every incoming query and generate a query plan, these
plans are being cached in a lru cache. This config controls the capacity of
the lru cache. (default 5000)

-queryserver-config-query-pool- int query server query pool timeout (in seconds), it is how long vttablet waits

timeout for a connection from the query pool. If set to 0 (default) then the overall
query timeout is used instead.

-queryserver-config-query-pool- int query server query pool waiter limit, this is the maximum number of queries

waiter-cap that can be queued waiting to get a connection (default 5000)

-queryserver-config-query- int query server query timeout (in seconds), this is the query timeout in vttablet

timeout side. If a query takes more than this timeout, it will be killed. (default 30)

-queryserver-config-schema- int query server schema reload time, how often vttablet reloads schemas from

reload-time underlying MySQL instance in seconds. vttablet keeps table schemas in its
own memory and periodically refreshes it from MySQL. This config controls
the reload time. (default 1800)

-queryserver-config-stream- int query server stream buffer size, the maximum number of bytes sent from

buffer-size vttablet for each stream call. It’s recommended to keep this value in sync
with vtgate’s stream_ buffer_size. (default 32768)

-queryserver-config-stream- int query server stream pool prefill parallelism, a non-zero value will prefill the

pool-prefill-parallelism

pool using the specified parallelism

172

Name Type Definition
-queryserver-config-stream- int query server stream connection pool size, stream pool is used by stream
pool-size queries: queries that return results to client in a streaming fashion (default

-queryserver-config-strict-table-

acl

-queryserver-config-terse-errors
-queryserver-config-transaction- int
cap

-queryserver-config-transaction- int
prefill-parallelism
-queryserver-config-transaction- int
timeout

-queryserver-config-txpool- int
timeout

-queryserver-config-txpool- int
waiter-cap

-queryserver-config-warn-result- int
size
-redact-debug-ui-queries

-remote_ operation_ timeout duration
-s3__backup_ aws__endpoint string
-s3__backup_aws_ region string
-s3__backup_aws_ retries int
-s3__backup_ force path_ style
-s3__backup_ log level string

- string
s3__backup_ server_side_ encryption
-s3__backup_ storage bucket string
-s3__backup__storage_ root string

s3_ backup_ tls_skip_ verify_ cert

-security _policy string
-service__map value
-sql-max-length-errors int
-sql-max-length-ui int
-srv__topo_ cache_ refresh duration
-srv__topo__cache_ ttl duration
-stats_backend string
-stats__combine_dimensions string
-stats_ drop_ variables string
-stats__emit_ period duration
-stderrthreshold value
-tablet_ dir string
-tablet_ grpc_ ca string
-tablet__grpc_ cert string

200)
only allow queries that pass table acl checks

prevent bind vars from escaping in returned errors

query server transaction cap is the maximum number of transactions
allowed to happen at any given point of a time for a single vttablet. E.g. by
setting transaction cap to 100, there are at most 100 transactions will be
processed by a vttablet and the 101th transaction will be blocked (and fail if
it cannot get connection within specified timeout) (default 20)

query server transaction prefill parallelism, a non-zero value will prefill the
pool using the specified parallism.

query server transaction timeout (in seconds), a transaction will be killed if
it takes longer than this value (default 30)

query server transaction pool timeout, it is how long vttablet waits if tx
pool is full (default 1)

query server transaction pool waiter limit, this is the maximum number of
transactions that can be queued waiting to get a connection (default 5000)
query server result size warning threshold, warn if number of rows returned
from vttablet for non-streaming queries exceeds this

redact full queries and bind variables from debug UI

time to wait for a remote operation (default 30s)

endpoint of the S3 backend (region must be provided)

AWS region to use (default “us-east-17)

AWS request retries (default -1)

force the s3 path style

determine the S3 loglevel to use from LogOff, LogDebug,
LogDebugWithSigning, LogDebugWithHTTPBody,
LogDebugWithRequestRetries, LogDebugWithRequestErrors (default
“Logoﬂ‘”)

server-side encryption algorithm (e.g., AES256, aws:kms)

S3 bucket to use for backups
root prefix for all backup-related object names
skip the ‘certificate is valid’ check for SSL connections

the name of a registered security policy to use for controlling access to URLs
- empty means allow all for anyone (built-in policies: deny-all, read-only)
comma separated list of services to enable (or disable if prefixed with)
Example: grpc-vtworker

truncate queries in error logs to the given length (default unlimited)
truncate queries in debug Uls to the given length (default 512) (default 512)
how frequently to refresh the topology for cached entries (default 1s)

how long to use cached entries for topology (default 1s)

The name of the registered push-based monitoring/stats backend to use
List of dimensions to be combined into a single “all” value in exported stats
vars

Variables to be dropped from the list of exported variables.

Interval between emitting stats to all registered backends (default 1mOs)
logs at or above this threshold go to stderr (default 1)

The directory within the vtdataroot to store vttablet/mysql files. Defaults
to being generated by the tablet uid.

the server ca to use to validate servers when connecting

the cert to use to connect

173

Name Type Definition

-tablet__grpc_ key string the key to use to connect

-tablet__grpc_server_name string the server name to use to validate server certificate

-tablet__manager grpc_ ca string the server ca to use to validate servers when connecting

-tablet__manager_grpc_ cert string the cert to use to connect

- int concurrency to use to talk to a vttablet server for performance-sensitive

tablet_manager grpc concurrency RPCs (like ExecuteFetchAs{Dba,AllPrivs,App}) (default 8)

-tablet__manager grpc_ key string the key to use to connect

- string the server name to use to validate server certificate

tablet__manager_grpc_server name

-tablet_ manager_ protocol string the protocol to use to talk to vttablet (default “grpc”)

-tablet_ protocol string how to talk to the vttablets (default “grpc”)

-tablet_url template string format string describing debug tablet url formatting. See the Go code for
getTabletDebugURL() how to customize this. (default
“http://{{.GetTabletHostPort}}”)

-throttler_ client_ grpc_ ca string the server ca to use to validate servers when connecting

-throttler_ client_ grpc_ cert string the cert to use to connect

-throttler_ client_ grpc_ key string the key to use to connect

- string the server name to use to validate server certificate

throttler_ client_ grpc_ server_name

-throttler_ client_ protocol string the protocol to use to talk to the integrated throttler service (default “grpc”)

- duration time of the long poll for watch queries. (default 30s)

topo__consul__watch_ poll duration

-topo__eted_lease_ ttl int Lease TTL for locks and master election. The client will use KeepAlive to
keep the lease going. (default 30)

-topo__eted__tls_ca string path to the ca to use to validate the server cert when connecting to the etcd
topo server

-topo__eted__tls_ cert string path to the client cert to use to connect to the eted topo server, requires
topo_etcd_tls key, enables TLS

-topo__eted_ tls_ key string path to the client key to use to connect to the etcd topo server, enables TLS

-topo__global__root string the path of the global topology data in the global topology server

-topo__global__server__address string the address of the global topology server

-topo__implementation string the topology implementation to use

-topo_ k8s_ context string The kubeconfig context to use, overrides the ‘current-context’ from the
config

-topo__k8s_ kubeconfig string Path to a valid kubeconfig file.

-topo__k8s namespace string The kubernetes namespace to use for all objects. Default comes from the
context or in-cluster config

-topo_ zk auth_ file string auth to use when connecting to the zk topo server, file contents should be :,
e.g., digest:user:pass

-topo_ zk base timeout duration zk base timeout (see zk.Connect) (default 30s)

-topo_ zk__max_ concurrency int maximum number of pending requests to send to a Zookeeper server.
(default 64)

-topo_zk_tls_ca string the server ca to use to validate servers when connecting to the zk topo server

-topo_zk_tls_cert string the cert to use to connect to the zk topo server, requires topo_ zk tls_key,
enables TLS

-topo_ zk_ tls_key string the key to use to connect to the zk topo server, enables TLS

-tracer string tracing service to use (default “noop”)

-tracing-sampling-rate float sampling rate for the probabilistic jaeger sampler (default 0.1)

-transaction-log-stream-handler string URL handler for streaming transactions log (default “/debug/txlog”)

transaction_ limit_ by_component

transaction_ limit_ by_ principal

transaction_ limit_ by subcomponent

Include CallerID.component when considering who the user is for the
purpose of transaction limit.

Include CallerID.principal when considering who the user is for the purpose
of transaction limit. (default true)

Include CallerID.subcomponent when considering who the user is for the
purpose of transaction limit.

174

Name Type Definition

- Include VT GateCallerID.username when considering who the user is for the

transaction_ limit_ by_ username purpose of transaction limit. (default true)

-transaction_ limit_ per_ user float Maximum number of transactions a single user is allowed to use at any
time, represented as fraction of -transaction__cap. (default 0.4)

- int how long to wait (in seconds) for transactions to complete during graceful

transaction_ shutdown_ grace_ period shutdown.

-twopc__abandon__age float time in seconds. Any unresolved transaction older than this time will be
sent to the coordinator to be resolved.

-twopc__coordinator__address string address of the (VT Gate) process(es) that will be used to notify of
abandoned transactions.

-twopc__enable if the flag is on, 2pc is enabled. Other 2pc flags must be supplied.

-tx-throttler-config string The configuration of the transaction throttler as a text formatted
throttlerdata.Configuration protocol buffer message (default
“target_ replication_lag sec: 2 max_ replication_lag sec: 10 initial_rate:
100 max_ increase: 1 emergency_ decrease: 0.5
min_duration_between_increases sec: 40
max_ duration_between_increases_ sec: 62
min_ duration_ between_ decreases_ sec: 20 spread__backlog across_ sec: 20
age bad_rate_after_sec: 180 bad_rate increase: 0.1
max_ rate_approach_ threshold: 0.9”)

-tx-throttler-healthcheck-cells value A comma-separated list of cells. Only tabletservers running in these cells
will be monitored for replication lag by the transaction throttler.

-V value log level for V logs

-version print binary version

-vmodule value comma-separated list of pattern=N settings for file-filtered logging

- duration healthcheck retry delay (default 5s)

vreplication__healthcheck retry delay

- duration healthcheck retry delay (default 1mOs)

vreplication__healthcheck timeout

- duration refresh interval for re-reading the topology (default 30s)

vreplication__healthcheck topology_ refresh

-vreplication_ retry delay duration
-vreplication__tablet_ type string
-vstream__packet_ size int

- duration
vtetl healthcheck retry delay

-vtetl healthcheck timeout duration
- duration

vtctl__healthcheck_topology_ refresh

-vtgate_grpc_ca string
-vtgate_grpc_ cert string
-vtgate_grpc_key string
-vtgate grpc_server_name string
-vtgate_ protocol string
-wait-time duration
-wait_ for_drain_sleep rdonly duration
-wait_ for drain_sleep replica duration

-watch_ replication_ stream

delay before retrying a failed binlog connection (default 5s)

comma separated list of tablet types used as a source (default “REPLICA”)
Suggested packet size for VReplication streamer. This is used only as a
recommendation. The actual packet size may be more or less than this
amount. (default 30000)

delay before retrying a failed healthcheck (default 5s)

the health check timeout period (default 1m0s)
refresh interval for re-reading the topology (default 30s)

the server ca to use to validate servers when connecting

the cert to use to connect

the key to use to connect

the server name to use to validate server certificate

how to talk to vtgate (default “grpc”)

time to wait on an action (default 24hOm0s)

time to wait before shutting the query service on old RDONLY tablets
during MigrateServedTypes (default 5s)

time to wait before shutting the query service on old REPLICA tablets
during MigrateServedTypes (default 15s)

When enabled, vttablet will stream the MySQL replication stream from the
local server, and use it to support the include_event_ token ExecuteOptions.

175

Name Type Definition

-xbstream_ restore_ flags string flags to pass to xbstream command during restore. These should be space
separated and will be added to the end of the command. These need to
match the ones used for backup e.g. —compress / —decompress, —encrypt /

—decrypt

-xtrabackup_ backup_ flags string flags to pass to backup command. These should be space separated and will
be added to the end of the command

-xtrabackup_ prepare_ flags string flags to pass to prepare command. These should be space separated and will
be added to the end of the command

-xtrabackup_ root_ path string directory location of the xtrabackup executable, e.g., /usr/bin

-xtrabackup_ stream__mode string which mode to use if streaming, valid values are tar and xbstream (default
“tar”)

-xtrabackup_ stripe_ block_size uint Size in bytes of each block that gets sent to a given stripe before rotating to
the next stripe (default 102400)

-xtrabackup__ stripes uint If greater than 0, use data striping across this many destination files to
parallelize data transfer and decompression

-xtrabackup_ user string User that xtrabackup will use to connect to the database server. This user
must have all necessary privileges. For details, please refer to xtrabackup
documentation.

vtetld

description: The Vitess Admin GUI

vtctld is a webserver interface to administer a Vitess cluster. It is usually the first Vitess component to be started after a valid
global topology service has been created.

Example Usage

The following example launches the vtctld daemon on port 15000:

export TOPOLOGY_FLAGS="-topo_implementation etcd2 -topo_global_server_address
localhost:2379 -topo_global_root /vitess/global"
export VTDATAROOT="/tmp"

vtctld \

$TOPOLOGY_FLAGS \
-workflow_manager_init \
-workflow_manager_use_election \
-service_map 'grpc-vtctl' \
-backup_storage_implementation file \
-file_backup_storage_root $VTDATAROOT/backups \
-log_dir $VTDATAROOT/tmp \
-port 15000 \

-grpc_port 15999

Options
Name Type Definition
-action__timeout duration time to wait for an action before resorting to force (default 2m0s)
-alsologtostderr log to standard error as well as files
-app__idle_ timeout duration Idle timeout for app connections (default 1m0Os)
-app__pool_size int Size of the connection pool for app connections (default 40)

176

Name Type

Definition

- string
azblob__backup_ account_ key_ file

- string
azblob_ backup_ account_ name

- string
azblob__backup_ container_name
-azblob__backup_ parallelism int

-azblob_ backup_ storage_ root string

- string
backup__engine_implementation
-backup__storage_block_ size int
-backup__storage_ compress boolean
-backup_ storage hook string

- string
backup__storage_implementation

- int
backup__storage number_ blocks

-binlog_ player_ protocol string

- boolean
binlog use v3_resharding mode

-cell string

-ceph_ backup_ storage config string

Path to a file containing the Azure Storage account key; if this flag is unset,
the environment variable VT AZBLOB_ ACCOUNT KEY will be used as
the key itself (NOT a file path)

Azure Storage Account name for backups; if this flag is unset, the
environment variable VI AZBLOB_ ACCOUNT_ NAME will be used
Azure Blob Container Name

Azure Blob operation parallelism (requires extra memory when increased)
(default 1)

Root prefix for all backup-related Azure Blobs; this should exclude both
initial and trailing ¢/’ (e.g. just ‘a/b’ not ‘/a/b/’)

Specifies which implementation to use for creating new backups (builtin or
xtrabackup). Restores will always be done with whichever engine created a
given backup. (default “builtin”)

if backup__storage_compress is true, backup_ storage_block_size sets the
byte size for each block while compressing (default is 250000). (default
250000)

if set, the backup files will be compressed (default is true). Set to false for
instance if a backup_ storage hook is specified and it compresses the data.
(default true)

if set, we send the contents of the backup files through this hook.

which implementation to use for the backup storage feature

if backup_ storage compress is true, backup_ storage number_blocks sets
the number of blocks that can be processed, at once, before the writer
blocks, during compression (default is 2). It should be equal to the number
of CPUs available for compression (default 2)

the protocol to download binlogs from a vttablet (default “grpc”)

True iff the binlog streamer should use V3-style sharding, which doesn’t
require a preset sharding key column. (default true)

cell to use

Path to JSON conlfig file for ceph backup storage (default

“ceph__backup_ config.json”)

JSON File to read the topos/tokens from.

write cpu profile to file

host to send spans to. if empty, no tracing will be done

port to send spans to. if empty, no tracing will be done

db credentials file; send SIGHUP to reload this file

db credentials server type (use ‘file’ for the file implementation) (default
“file”)

Idle timeout for dba connections (default 1m0s)

Size of the connection pool for dba connections (default 20)

if set, do not allow active reparents. Use this to protect a cluster using
external reparents.

the replication lag that is considered too high when selecting the minimum

discovery__high_ replication_lag minimum_ semwimgttablets for serving (default 2h0mo0s)

-consul auth static_file string
-cpu__profile string
-datadog-agent-host string
-datadog-agent-port string
-db-credentials-file string
-db-credentials-server string
-dba__idle_timeout duration
-dba_ pool_size int
-disable_ active reparents boolean
- duration
- duration
discovery_low_ replication_lag

-emit_ stats boolean
-enable-consolidator boolean
-enable-consolidator-replicas boolean

-enable-query-plan-field-caching boollean

-enable-tx-throttler boolean

the replication lag that is considered low enough to be healthy (default 30s)

true iff we should emit stats to push-based monitoring/stats backends

This option enables the query consolidator. (default true)

This option enables the query consolidator only on replicas.

This option fetches & caches fields (columns) when storing query plans
(default true)

If true replication-lag-based throttling on transactions will be enabled.

177

Name Type Definition

-enable_hot_ row_ protection boolean If true, incoming transactions for the same row (range) will be queued and
cannot consume all txpool slots.

- boolean If true, hot row protection is not enforced but logs if transactions would

enable__hot_ row_ protection_ dry_run

-enable__queries boolean
-enable realtime stats boolean
-enable transaction_ limit boolean
- boolean

enable_ transaction_ limit_ dry_ run

-enforce strict_ trans tables boolean
-file__backup_ storage_root string

-gcs_ backup_ storage bucket string
-gecs_backup_storage root string
-grpc_auth__mode string

- string
grpc_auth_mtls_allowed_ substrings

- string
grpc_auth_ static_ client_ creds

- string
grpc_auth_static_ password_ file

-grpc_ca string
-grpc__cert string
-grpc__compression string
-grpc__enable_ tracing boolean
- int
grpc_initial _conn_ window__ size
-grpc__initial _window__size int

-grpc_ keepalive_ time duration
-grpc__keepalive_ timeout duration
-grpc__key string
-grpc_max_ connection_ age duration
- duration
grpc_max__connection_age grace
-grpc_max_ message_ size int
-grpc__port int

-grpc_ prometheus boolean
- int
grpc_server_initial conn_ window__ size

- int

grpc_server_initial window_ size

have been queued.

if set, allows vtgate and vttablet queries. May have security implications, as
the queries will be run from this process.

Required for the Realtime Stats view. If set, vtctld will maintain a
streaming RPC to each tablet (in all cells) to gather the realtime health
stats.

If true, limit on number of transactions open at the same time will be
enforced for all users. User trying to open a new transaction after
exhausting their limit will receive an error immediately, regardless of
whether there are available slots or not.

If true, limit on number of transactions open at the same time will be
tracked for all users, but not enforced.

If true, vttablet requires MySQL to run with STRICT_TRANS_TABLES
or STRICT ALL_TABLES on. It is recommended to not turn this flag off.
Otherwise MySQL may alter your supplied values before saving them to the
database. (default true)

root directory for the file backup storage

Google Cloud Storage bucket to use for backups

root prefix for all backup-related object names

Which auth plugin implementation to use (eg: static)

List of substrings of at least one of the client certificate names (separated by
colon).

when using grpc_static_auth in the server, this file provides the credentials
to use to authenticate with server

JSON File to read the users/passwords from.

ca to use, requires TLS, and enforces client cert check
certificate to use, requires grpc_ key, enables TLS

how to compress gRPC, default: nothing, supported: snappy
Enable GRPC tracing

grpc initial connection window size

grpc initial window size

After a duration of this time if the client doesn’t see any activity it pings
the server to see if the transport is still alive. (default 10s)

After having pinged for keepalive check, the client waits for a duration of
Timeout and if no activity is seen even after that the connection is closed.
(default 10s)

key to use, requires grpc_ cert, enables TLS

Maximum age of a client connection before GoAway is sent. (default
2562047h47m16.854775807s)

Additional grace period after grpc_max_ connection_ age, after which
connections are forcibly closed. (default 2562047h47m16.854775807s)
Maximum allowed RPC message size. Larger messages will be rejected by
gRPC with the error ‘exceeding the max size’. (default 16777216)

Port to listen on for gRPC calls

Enable gRPC monitoring with Prometheus

grpc server initial connection window size

grpc server initial window size

178

Name Type

Definition

- duration

grpc server minimum keepalive time (default 5m0s)

grpc_server_keepalive_enforcement_ policy__min_ time

grpc server permit client keepalive pings even when there are no active

If true, vttablet records (if master) or checks (if replica) the current time of
a replication heartbeat in the table _vt.heartbeat. The result is used to
inform the serving state of the vttablet via healthchecks.

How frequently to read and write replication heartbeat. (default 1s)

- m
grpc_server_ keepalive _enforcement_ policy ptreaitis WRRGIsf) strea
-heartbeat__enable boolean

-heartbeat interval duration

- int

Number of concurrent transactions let through to the txpool/MySQL for

hot__row__protection__concurrent__ transactionghe same hot row. Should be > 1 to have enough ‘ready’ transactions in

MySQL and benefit from a pipelining effect. (default 5)
Global queue limit across all row (ranges). Useful to prevent that the queue

hot_ row__protection_max_ global _queue_ sizean grow unbounded. (default 1000)

- int

- int

hot_ row_ protection__max_ queue_ size
-jaeger-agent-host string
-keep__logs duration
-keep__logs_ by mtime duration
-lameduck-period duration
- boolean
legacy replication_lag algorithm

-log_ backtrace_ at value
-log_ dir string
-log_err_ stacks boolean
-log_rotate max_ size uint
-logtostderr boolean
-master__connect_ retry duration
-mem-profile-rate int

- int

min_ number_serving vttablets
-mutex-profile-fraction int

- string
mysql_auth_ server_ static_ file

- string
mysql_auth_server_static_string

- duration
mysql_auth_ static_ reload_ interval

- string
mysql_ clientcert__auth_method
-mysql_server_flush_ delay duration
-mysqlctl_client_ protocol string
-mysqlctl_mycnf template string
-mysqlctl__socket string
-onterm__timeout duration
-opentsdb__ uri string
-pid_file string

- duration
pool__hostname_ resolve_interval

-port int

Maximum number of BeginExecute RPCs which will be queued for the
same row (range). (default 20)

host and port to send spans to. if empty, no tracing will be done

keep logs for this long (using ctime) (zero to keep forever)

keep logs for this long (using mtime) (zero to keep forever)

keep running at least this long after SIGTERM before stopping (default
50ms)

use the legacy algorithm when selecting the vttablets for serving (default
true)

when logging hits line file:N, emit a stack trace

If non-empty, write log files in this directory

log stack traces for errors

size in bytes at which logs are rotated (glog.MaxSize) (default 1887436800)
log to standard error instead of files

how long to wait in between replica reconnect attempts. Only precise to the
second. (default 10s)

profile every n bytes allocated (default 524288)

the minimum number of vttablets that will be continue to be used even with
low replication lag (default 2)

profile every n mutex contention events (see
runtime.SetMutexProfileFraction)

JSON File to read the users/passwords from.

JSON representation of the users/passwords config.
Ticker to reload credentials

client-side authentication method to use. Supported values:

mysql clear_password, dialog. (default “mysql_clear password”)

Delay after which buffered response will flushed to client. (default 100ms)
the protocol to use to talk to the mysqlctl server (default “grpc”)
template file to use for generating the my.cnf file during server init

socket file to use for remote mysqlctl actions (empty for local actions)
wait no more than this for OnTermSync handlers before stopping (default
10s)

URI of opentsdb /api/put method

If set, the process will write its pid to the named file, and delete it on
graceful shutdown.

if set force an update to all hostnames and reconnect if changed, defaults to
0 (disabled)

port for the server

179

Name Type Definition

-proxy__tablets boolean Setting this true will make vtctld proxy the tablet status instead of
redirecting to them

-purge_logs_ interval duration how often try to remove old logs (default 1hOm0s)

-query-log-stream-handler string URL handler for streaming queries log (default “/debug/querylog”)

-querylog-filter-tag string string that must be present in the query as a comment for the query to be
logged, works for both vtgate and vttablet

-querylog-format string format for query logs (“text” or “json”) (default “text”)

-queryserver-config-acl-exempt- string an acl that exempt from table acl checking (this acl is free to access any

acl vitess tables).

-queryserver-config-enable- boolean If this flag is enabled, tabletserver will emit monitoring metrics and let the

table-acl-dry-run request pass regardless of table acl check results

-queryserver-config-idle-timeout int query server idle timeout (in seconds), vttablet manages various mysql
connection pools. This config means if a connection has not been used in
given idle timeout, this connection will be removed from pool. This
effectively manages number of connection objects and optimize the pool
performance. (default 1800)

-queryserver-config-max-dml- int query server max dml rows per statement, maximum number of rows

TOWS allowed to return at a time for an update or delete with either 1) an
equality where clauses on primary keys, or 2) a subselect statement. For
update and delete statements in above two categories, vttablet will split the
original query into multiple small queries based on this configuration value.

-queryserver-config-max-result- int query server max result size, maximum number of rows allowed to return

size from vttablet for non-streaming queries. (default 10000)

-queryserver-config-message- int query server message postpone cap is the maximum number of messages

postpone-cap that can be postponed at any given time. Set this number to substantially
lower than transaction cap, so that the transaction pool isn’t exhausted by
the message subsystem. (default 4)

-queryserver-config- boolean query server pass through all dml statements without rewriting

passthrough-dmls

-queryserver-config-pool-prefill- int query server read pool prefill parallelism, a non-zero value will prefill the

parallelism pool using the specified parallism.

-queryserver-config-pool-size int query server read pool size, connection pool is used by regular queries (non
streaming, not in a transaction) (default 16)

-queryserver-config-query- int query server query cache size, maximum number of queries to be cached.

cache-size vttablet analyzes every incoming query and generate a query plan, these
plans are being cached in a lru cache. This config controls the capacity of
the lru cache. (default 5000)

-queryserver-config-query-pool- int query server query pool timeout (in seconds), it is how long vttablet waits

timeout for a connection from the query pool. If set to 0 (default) then the overall
query timeout is used instead.

-queryserver-config-query-pool- int query server query pool waiter limit, this is the maximum number of queries

waiter-cap that can be queued waiting to get a connection (default 5000)

-queryserver-config-query- int query server query timeout (in seconds), this is the query timeout in vttablet

timeout side. If a query takes more than this timeout, it will be killed. (default 30)

-queryserver-config-schema- int query server schema reload time, how often vttablet reloads schemas from

reload-time underlying MySQL instance in seconds. vttablet keeps table schemas in its
own memory and periodically refreshes it from MySQL. This config controls
the reload time. (default 1800)

-queryserver-config-stream- int query server stream buffer size, the maximum number of bytes sent from

buffer-size vttablet for each stream call. It’s recommended to keep this value in sync
with vtgate’s stream_ buffer_size. (default 32768)

-queryserver-config-stream- int query server stream pool prefill parallelism, a non-zero value will prefill the

pool-prefill-parallelism

pool using the specified parallelism

180

Name Type Definition

-queryserver-config-stream- int query server stream connection pool size, stream pool is used by stream

pool-size queries: queries that return results to client in a streaming fashion (default
200)

-queryserver-config-strict-table- boolean only allow queries that pass table acl checks

acl

-queryserver-config-terse-errors ~ boolean prevent bind vars from escaping in returned errors

-queryserver-config-transaction- int query server transaction cap is the maximum number of transactions

cap allowed to happen at any given point of a time for a single vttablet. E.g. by
setting transaction cap to 100, there are at most 100 transactions will be
processed by a vttablet and the 101th transaction will be blocked (and fail if
it cannot get connection within specified timeout) (default 20)

-queryserver-config-transaction- int query server transaction prefill parallelism, a non-zero value will prefill the

prefill-parallelism pool using the specified parallism.

-queryserver-config-transaction- int query server transaction timeout (in seconds), a transaction will be killed if

timeout it takes longer than this value (default 30)

-queryserver-config-txpool- int query server transaction pool timeout, it is how long vttablet waits if tx

timeout pool is full (default 1)

-queryserver-config-txpool- int query server transaction pool waiter limit, this is the maximum number of

waiter-cap transactions that can be queued waiting to get a connection (default 5000)

-queryserver-config-warn-result- int query server result size warning threshold, warn if number of rows returned

size from vttablet for non-streaming queries exceeds this

-redact-debug-ui-queries boolean redact full queries and bind variables from debug UI

-remote_ operation_ timeout duration time to wait for a remote operation (default 30s)

-s3__backup_ aws__endpoint string endpoint of the S3 backend (region must be provided)

-s3__backup_aws_ region string AWS region to use (default “us-east-17)

-s3__backup_aws_ retries int AWS request retries (default -1)

-s3_ backup_ force_path_style boolean force the s3 path style

-s3__backup_log_level string determine the S3 loglevel to use from LogOff, LogDebug,
LogDebugWithSigning, LogDebugWithHTTPBody,
LogDebugWithRequestRetries, LogDebugWithRequestErrors (default
“Logoﬂ‘”)

- string server-side encryption algorithm (e.g., AES256, aws:kms)

s3__backup_ server_side_ encryption

-s3__backup_ storage_ bucket string S3 bucket to use for backups

-s3__backup__storage_ root string root prefix for all backup-related object names

- boolean skip the ‘certificate is valid’ check for SSL connections

s3_ backup_ tls_skip_ verify_ cert

- int this value decides how often we check schema change dir, in seconds (default

schema,_ change check_ interval 60)

-schema__change_ controller string schema change controller is responsible for finding schema changes and
responding to schema change events

-schema_ change dir string directory contains schema changes for all keyspaces. Each keyspace has its
own directory and schema changes are expected to live in
‘$SKEYSPACE/input’ dir. e.g. test_ keyspace/input/*sql, each sql file
represents a schema change

- duration how long to wait for replicas to receive the schema change (default 10s)

schema_ change_ slave_ timeout

-schema_ change user string The user who submits this schema change.

- duration timeout for SQL queries used to save and retrieve meta information for

schema,_ swap_admin_ query_ timeout

int

schema_ swap_ backup__concurrency

duration

schema,_ swap_ delay between_ errors

schema swap process (default 30s)

number of simultaneous compression/checksum jobs to run for seed backup
during schema swap (default 4)

time to wait after a retryable error happened in the schema swap process
(default 1m0s)

181

Name Type Definition

- duration timeout to wait for replicas when doing reparent during schema swap

schema_ swap_ reparent_ timeout (default 30s)

-security__ policy string the name of a registered security policy to use for controlling access to URLs
- empty means allow all for anyone (built-in policies: deny-all, read-only)

-service__map value comma separated list of services to enable (or disable if prefixed with ‘-’)
Example: grpc-vtworker

-sql-max-length-errors int truncate queries in error logs to the given length (default unlimited)

-sql-max-length-ui int truncate queries in debug Uls to the given length (default 512) (default 512)

-srv__topo__cache_ refresh duration how frequently to refresh the topology for cached entries (default 1s)

-srv__topo__cache_ ttl duration how long to use cached entries for topology (default 1s)

-stats_backend string The name of the registered push-based monitoring/stats backend to use

-stats__combine_dimensions string List of dimensions to be combined into a single “all” value in exported stats
vars

-stats__drop_ variables string Variables to be dropped from the list of exported variables.

-stats__emit_ period duration Interval between emitting stats to all registered backends (default 1m0s)

-stderrthreshold value logs at or above this threshold go to stderr (default 1)

-tablet_ dir string The directory within the vtdataroot to store vttablet/mysql files. Defaults
to being generated by the tablet uid.

-tablet_ grpc_ ca string the server ca to use to validate servers when connecting

-tablet_ grpc_ cert string the cert to use to connect

-tablet_ grpc_ key string the key to use to connect

-tablet_ grpc_server name string the server name to use to validate server certificate

-tablet__health_ keep_ alive duration close streaming tablet health connection if there are no requests for this
long (default 5m0s)

-tablet__manager_grpc_ca string the server ca to use to validate servers when connecting

-tablet__manager grpc_ cert string the cert to use to connect

- int concurrency to use to talk to a vttablet server for performance-sensitive

tablet manager grpc concurrency RPCs (like ExecuteFetchAs{Dba,AllPrivs,App}) (default 8)

-tablet__manager grpc_ key string the key to use to connect

- string the server name to use to validate server certificate

tablet__manager_grpc_server name

-tablet_ manager_ protocol string the protocol to use to talk to vttablet (default “grpc”)

-tablet_ protocol string how to talk to the vttablets (default “grpc”)

-tablet_url template string format string describing debug tablet url formatting. See the Go code for
getTabletDebugURL() how to customize this. (default
“http://{{.GetTabletHostPort}}”)

-throttler_ client_ grpc_ ca string the server ca to use to validate servers when connecting

-throttler_ client_ grpc_ cert string the cert to use to connect

-throttler_ client_ grpc_ key string the key to use to connect

- string the server name to use to validate server certificate

throttler_ client_ grpc_server name

-throttler_ client_ protocol string the protocol to use to talk to the integrated throttler service (default “grpc”)

- duration time of the long poll for watch queries. (default 30s)

topo__consul__watch_ poll duration

-topo__eted_lease_ ttl int Lease TTL for locks and master election. The client will use KeepAlive to
keep the lease going. (default 30)

-topo__eted__tls_ ca string path to the ca to use to validate the server cert when connecting to the eted
topo server

-topo__eted__tls_ cert string path to the client cert to use to connect to the eted topo server, requires
topo_etcd_tls key, enables TLS

-topo__eted_ tls_ key string path to the client key to use to connect to the etcd topo server, enables TLS

-topo__global _root string the path of the global topology data in the global topology server

-topo__global_server__address string the address of the global topology server

-topo__implementation string the topology implementation to use

182

Name Type Definition

-topo_ k8s_ context string The kubeconfig context to use, overrides the ‘current-context’ from the
config

-topo__k8s_ kubeconfig string Path to a valid kubeconfig file.

-topo__k8s_namespace string The kubernetes namespace to use for all objects. Default comes from the
context or in-cluster config

-topo_ zk__auth_ file string auth to use when connecting to the zk topo server, file contents should be :,
e.g., digest:user:pass

-topo_ zk base timeout duration zk base timeout (see zk.Connect) (default 30s)

-topo_ zk__max_ concurrency int maximum number of pending requests to send to a Zookeeper server.
(default 64)

-topo_zk_tls_ca string the server ca to use to validate servers when connecting to the zk topo server

-topo_zk_tls_ cert string the cert to use to connect to the zk topo server, requires topo_ zk_tls_ key,
enables TLS

-topo_ zk_ tls_ key string the key to use to connect to the zk topo server, enables TLS

-tracer string tracing service to use (default “noop”)

-tracing-sampling-rate float sampling rate for the probabilistic jaeger sampler (default 0.1)

-transaction-log-stream-handler string URL handler for streaming transactions log (default “/debug/txlog”)

- boolean Include CallerID.component when considering who the user is for the

transaction_ limit_ by_component purpose of transaction limit.

- boolean Include CallerID.principal when considering who the user is for the purpose

transaction_ limit_ by_ principal of transaction limit. (default true)

- boolean Include CallerID.subcomponent when considering who the user is for the

transaction_ limit_ by subcomponent purpose of transaction limit.

- boolean Include VT GateCallerID.username when considering who the user is for the

transaction_ limit_ by_ username purpose of transaction limit. (default true)

-transaction_ limit_ per_user float Maximum number of transactions a single user is allowed to use at any
time, represented as fraction of -transaction_ cap. (default 0.4)

- int how long to wait (in seconds) for transactions to complete during graceful

transaction_ shutdown__grace_ period

-twopc__abandon__age float

-twopc__coordinator _address string

-twopc__enable boolean

-tx-throttler-config string

-tx-throttler-healthcheck-cells value

-V value

-version

-vmodule value

- duration

vreplication__healthcheck retry delay

- duration

vreplication_healthcheck timeout
duration

vreplication_healthcheck topology refresh
-vreplication_ retry_ delay duration

shutdown.

time in seconds. Any unresolved transaction older than this time will be
sent to the coordinator to be resolved.

address of the (VT'Gate) process(es) that will be used to notify of
abandoned transactions.

if the flag is on, 2pc is enabled. Other 2pc flags must be supplied.

The configuration of the transaction throttler as a text formatted
throttlerdata.Configuration protocol buffer message (default

“target_ replication_lag sec: 2 max_ replication_lag sec: 10 initial_rate:
100 max_ increase: 1 emergency_ decrease: 0.5
min_duration between increases sec: 40

max_ duration_between increases sec: 62

min_ duration_ between__decreases_sec: 20 spread_ backlog_across_sec: 20
age_bad_rate_after_sec: 180 bad_ rate increase: 0.1

max_ rate_approach_ threshold: 0.9”)

A comma-separated list of cells. Only tabletservers running in these cells
will be monitored for replication lag by the transaction throttler.

log level for V logs

print binary version

comma-separated list of pattern=N settings for file-filtered logging
healthcheck retry delay (default 5s)

healthcheck retry delay (default 1mO0s)
refresh interval for re-reading the topology (default 30s)

delay before retrying a failed binlog connection (default 5s)

183

Name Type Definition

-vreplication_ tablet_ type string comma separated list of tablet types used as a source (default “REPLICA”)

-vstream_ packet__size int Suggested packet size for VReplication streamer. This is used only as a
recommendation. The actual packet size may be more or less than this
amount. (default 30000)

-vtetl__client_ protocol string the protocol to use to talk to the vtctl server (default “grpc”)

- duration delay before retrying a failed healthcheck (default 5s)

vtetl _healthcheck retry delay

-vtetl _healthcheck timeout duration the health check timeout period (default 1m0s)

- duration refresh interval for re-reading the topology (default 30s)

vtctl__healthcheck_topology_ refresh
-vtetld__show_topology crud boolean

-vtgate grpc_ca string
-vtgate_grpc_ cert string
-vtgate_grpc_ key string
-vtgate_ grpc_ server_name string
-vtgate_ protocol string
-vtworker_ client_ grpc_ ca string
-vtworker_ client_ grpc_ cert string
-vtworker_ client_ grpc_ key string
- string
vtworker_ client_ grpc_ server name

-vtworker__client_ protocol string

-wait_ for drain_sleep_ rdonly duration

-wait_ for_drain_sleep replica duration

-watch_ replication_ stream boolean
-workflow__manager_ disable value
-workflow__manager_ init boolean
- boolean
workflow__manager_use_ election
-xbstream_ restore flags string
-xtrabackup_ backup_flags string
-xtrabackup_ prepare_ flags string
-xtrabackup_ root_ path string
-xtrabackup_ stream__mode string

-xtrabackup_ stripe_ block_size uint
-xtrabackup__stripes uint

-xtrabackup_ user string

Controls the display of the CRUD topology actions in the vtctld UL
(default true)

the server ca to use to validate servers when connecting
the cert to use to connect

the key to use to connect

the server name to use to validate server certificate
how to talk to vtgate (default “grpc”)

the server ca to use to validate servers when connecting
the cert to use to connect

the key to use to connect

the server name to use to validate server certificate

the protocol to use to talk to the vtworker server (default “grpc”)

time to wait before shutting the query service on old RDONLY tablets
during MigrateServed Types (default 5s)

time to wait before shutting the query service on old REPLICA tablets
during MigrateServed Types (default 15s)

When enabled, vttablet will stream the MySQL replication stream from the
local server, and use it to support the include_event_ token ExecuteOptions.
comma separated list of workflow types to disable

Initialize the workflow manager in this vtctld instance.

if specified, will use a topology server-based master election to ensure only
one workflow manager is active at a time.

flags to pass to xbstream command during restore. These should be space
separated and will be added to the end of the command. These need to
match the ones used for backup e.g. —compress / —decompress, —encrypt /
—decrypt

flags to pass to backup command. These should be space separated and will
be added to the end of the command

flags to pass to prepare command. These should be space separated and will
be added to the end of the command

directory location of the xtrabackup executable, e.g., /usr/bin

which mode to use if streaming, valid values are tar and xbstream (default
“tar”)

Size in bytes of each block that gets sent to a given stripe before rotating to
the next stripe (default 102400)

If greater than 0, use data striping across this many destination files to
parallelize data transfer and decompression

User that xtrabackup will use to connect to the database server. This user
must have all necessary privileges. For details, please refer to xtrabackup
documentation.

184

vtexplain

vtexplain is a command line tool which provides information on how Vitess plans to execute a particular query. It can be used
to validate queries for compatibility with Vitess.

For a user guide that describes how to use the vtexplain tool to explain how Vitess executes a particular SQL statement, see
Analyzing a SQL statement.

Example Usage

Explain how Vitess will execute the query SELECT * FROM users using the VSchema contained in vschemas. json and the
database schema schema.sql:

vtexplain -vschema-file vschema.json -schema-file schema.sql -sql "SELECT * FROM users"

Explain how the example will execute on 128 shards using Row-based replication:

vtexplain -shards 128 -vschema-file vschema.json -schema-file schema.sql -replication-mode
"ROW" -output-mode text -sql "INSERT INTO users (user_id, name) VALUES(1, 'john')"

Options

The following parameters apply to mysqlctl:

Name Type Definition

-output-mode string Output in human-friendly text or json (default “text”)

-normalize Whether to enable vtgate normalization (default false)

-shards int Number of shards per keyspace (default 2)

-replication-mode string The replication mode to simulate — must be set to either ROW or
STATEMENT (default “ROW?)

-schema string The SQL table schema (default ””)

-schema-file string Identifies the file that contains the SQL table schema (default ””)

-sql string A list of semicolon-delimited SQL commands to analyze (default ””)

-sql-file string Identifies the file that contains the SQL commands to analyze (default ””)

-vschema string Identifies the VT Gate routing schema (default ””)

-vschema-file string Identifies the VT'Gate routing schema file (default ””)

-ks-shard-map string Identifies the shard keyranges for unevenly-sharded keyspaces (default ””)

-ks-shard-map-file string Identifies the shard keyranges file (default ””)

-dbname string Optional database target to override normal routing (default ””)

-queryserver-config- query server pass through all dml statements without rewriting (default

passthrough-dmls false)

Please note that ~ks-shard-map and ks-shard-map-file will supercede -shards. If you attempt to vtexplain on a keyspace
that is included in the keyspace shard map, the shards as defined in the mapping will be used and -shards will be ignored.

Limitations

The VSchema must use a keyspace name. VTExplain requires a keyspace name for each keyspace in an input VSChema:

"keyspace_name": {
"_comment": "Keyspace definition goes here."

}

If no keyspace name is present, VT Explain will return the following error:

185

ERROR: initVtgateExecutor: json: cannot unmarshal bool into Go value of type

map [string] json.RawMessage

vtgate

VTGate is a stateless proxy responsible for accepting requests from applications and

routing them to the appropriate

tablet server(s) for query execution. It speaks both the

MySQL Protocol and a gRPC protocol.

Example Usage
Start a vtgate proxy:

"~ “bash

export TOPOLOGY_FLAGS="-topo_implementation etcd2 -topo_global_server_address
localhost:2379 -topo_global_root /vitess/global"

export VTDATAROOT="/tmp"

vtgate \
$TOPOLOGY_FLAGS \
-log_dir $VTDATAROOT/tmp \
-port 15001 \
-grpc_port 15991 \
-mysql_server_port 15306 \
-cell test \
-cells_to_watch test \

-tablet_types_to_wait MASTER,REPLICA \
-gateway_implementation discoverygateway \

-service_map 'grpc-vtgateservice'

\

-pid_file $VTDATAROOT/tmp/vtgate.pid \

-mysql_auth_server_impl none

Options

The following global options apply to vtgate:

Name Type Definition

-allowed__tablet_ types value Specifies the tablet types this vtgate is allowed to route queries to

-alsologtostderr boolean log to standard error as well as files

-buffer _drain_ concurrency int Maximum number of requests retried simultaneously. More concurrency will
increase the load on the MASTER vttablet when draining the buffer.
(default 1)

-buffer_ keyspace_shards string If not empty, limit buffering to these entries (comma separated). Entry

-buffer max_failover duration duration

- duration
buffer min time between_failovers

-buffer size int
-buffer window duration
-cell string
-cells__to__watch string

format: keyspace or keyspace/shard. Requires —enable_ buffer=true

Stop buffering completely if a failover takes longer than this duration.
(default 20s)

Minimum time between the end of a failover and the start of the next one
(tracked per shard). Faster consecutive failovers will not trigger buffering.
(default 1m0s)

Maximum number of buffered requests in flight (across all ongoing
failovers). (default 10)

Duration for how long a request should be buffered at most. (default 10s)
cell to use (default “test_nj”)

comma-separated list of cells for watching tablets

186

Name Type Definition

-consul__auth_ static_ file string JSON File to read the topos/tokens from.

-cpu__profile string write cpu profile to file

-datadog-agent-host string host to send spans to. if empty, no tracing will be done

-datadog-agent-port string port to send spans to. if empty, no tracing will be done

-default_ tablet_ type value The default tablet type to set for queries, when one is not explicitly selected
(default MASTER)

- duration the replication lag that is considered too high when selecting the minimum

discovery__high_ replication_lag minimum_ serwimgttablets for serving (default 2h0mO0s)

- duration the replication lag that is considered low enough to be healthy (default 30s)

discovery_ low_ replication_ lag

-emit__stats boolean true iff we should emit stats to push-based monitoring/stats backends

-enable_ buffer boolean Enable buffering (stalling) of master traffic during failovers.

-enable_ buffer_dry_run boolean Detect and log failover events, but do not actually buffer requests.

-gate__query_ cache_ size int gate server query cache size, maximum number of queries to be cached.
vtgate analyzes every incoming query and generate a query plan, these
plans are being cached in a lru cache. This config controls the capacity of
the lru cache. (default 10000)

-gateway__implementation string The implementation of gateway (default “discoverygateway”)

- duration At startup, the gateway will wait up to that duration to get one tablet per

gateway_ initial_tablet_ timeout keyspace/shard/tablettype (default 30s)

-grpc_auth__mode string Which auth plugin implementation to use (eg: static)

- string List of substrings of at least one of the client certificate names (separated by

grpc_auth_mtls_ allowed_ substrings colon).

- string when using grpc_static_auth in the server, this file provides the credentials

grpc_auth_ static_ client_ creds to use to authenticate with server

- string JSON File to read the users/passwords from.

grpc_auth_ static_ password_ file

-grpc_ca string ca to use, requires TLS, and enforces client cert check

-grpc_cert string certificate to use, requires grpc_ key, enables TLS

-grpc__compression string how to compress gRPC, default: nothing, supported: snappy

-grpc__enable_tracing boolean Enable GRPC tracing

- int grpc initial connection window size

grpc__initial _conn_ window_ size

-grpc__initial _window__ size int grpc initial window size

-grpc__keepalive_ time duration After a duration of this time if the client doesn’t see any activity it pings
the server to see if the transport is still alive. (default 10s)

-grpc_keepalive_timeout duration After having pinged for keepalive check, the client waits for a duration of
Timeout and if no activity is seen even after that the connection is closed.
(default 10s)

-grpc_ key string key to use, requires grpc_ cert, enables TLS

-grpc__max__connection_ age duration ~Maximum age of a client connection before GoAway is sent. (default
2562047h47m16.854775807s)

- duration Additional grace period after grpc_ max_ connection_ age, after which

grpc_max_ connection_ age grace connections are forcibly closed. (default 2562047h47m16.854775807s)

-grpc_max_ message_ size int Maximum allowed RPC message size. Larger messages will be rejected by
gRPC with the error ‘exceeding the max size’. (default 16777216)

-grpc__port int Port to listen on for gRPC calls

-grpc__prometheus boolean Enable gRPC monitoring with Prometheus

- int grpc server initial connection window size

grpc_server__initial conn_ window__ size

- int grpc server initial window size

grpc_server_initial window__size

- duration grpc server minimum keepalive time (default 5m0s)

grpc_server keepalive enforcement policy min_ time

187

Name Type Definition

- boolean grpc server permit client keepalive pings even when there are no active

grpc_server_ keepalive_enforcement_ policy ptreaitis WRRBGisf) stream

-grpc__use__ effective_ callerid boolean If set, and SSL is not used, will set the immediate caller id from the effective
caller id’s principal.

-healthcheck retry delay duration health check retry delay (default 2ms)

-healthcheck timeout duration the health check timeout period (default 1mO0s)

-jaeger-agent-host string host and port to send spans to. if empty, no tracing will be done

-keep__logs duration keep logs for this long (using ctime) (zero to keep forever)

-keep_logs_by__mtime duration keep logs for this long (using mtime) (zero to keep forever)

-keyspaces_ to_ watch value Specifies which keyspaces this vtgate should have access to while routing
queries or accessing the vschema

-lameduck-period duration keep running at least this long after SIGTERM before stopping (default
50ms)

- boolean use the legacy algorithm when selecting the vttablets for serving (default

legacy_ replication_lag algorithm true)

-log_backtrace at value when logging hits line file:N, emit a stack trace

-log_ dir string If non-empty, write log files in this directory

-log_err_ stacks boolean log stack traces for errors

-log_queries_to_ file string Enable query logging to the specified file

-log_rotate max_ size uint size in bytes at which logs are rotated (glog.MaxSize) (default 1887436800)

-logtostderr boolean log to standard error instead of files

-max_ memory_ rows int Maximum number of rows that will be held in memory for intermediate
results as well as the final result. (default 300000)

-mem-profile-rate int profile every n bytes allocated (default 524288)

- duration the amount of time to give for a vttablet to resume if it ends a message

message_ stream__grace_ period stream, usually because of a reparent. (default 30s)

- int the minimum number of vttablets that will be continue to be used even with

min_ number_ serving vttablets low replication lag (default 2)

-mutex-profile-fraction int profile every n mutex contention events (see
runtime.SetMutexProfileFraction)

- boolean If set, the server will allow the use of a clear text password over non-SSL

mysql_allow_ clear_text_without_ tls connections.

-mysql_auth_ server_ impl string Which auth server implementation to use. (default “static”)

- string JSON File to read the users/passwords from.

mysql_auth_ server_static_ file

- string JSON representation of the users/passwords config.

mysql_auth_ server_ static_ string

- duration Ticker to reload credentials

mysql__auth_ static_ reload_ interval

- string client-side authentication method to use. Supported values:

mysql_ clientcert__auth_method mysql_clear_ password, dialog. (default “mysql_clear password”)

-mysql_default_ workload string Default session workload (OLTP, OLAP, DBA) (default “UNSPECIFIED”)

-mysql_ldap_auth_config file string JSON File from which to read LDAP server config.

- string JSON representation of LDAP server config.

mysql_ldap_auth_ config_string

-mysql_ldap_auth_method string client-side authentication method to use. Supported values:
mysql_clear_ password, dialog. (default “mysql_clear password”)

-mysql_server bind_address string Binds on this address when listening to MySQL binary protocol. Useful to
restrict listening to ‘localhost’ only for instance.

-mysql_server_flush_ delay duration Delay after which buffered response will flushed to client. (default 100ms)

-mysql__server__port int If set, also listen for MySQL binary protocol connections on this port.

-mysql_server__query_timeout duration
-mysql_server read_ timeout duration

(default -1)
mysql query timeout
connection read timeout

188

Name Type Definition

- boolean Reject insecure connections but only if mysql server_ssl_ cert and

mysql__server_require_secure_ transport mysql_server_ssl_key are provided

-mysql_server_socket_ path string This option specifies the Unix socket file to use when listening for local
connections. By default it will be empty and it won’t listen to a unix socket

-mysql_server_ssl ca string Path to ssl CA for mysql server plugin SSL. If specified, server will require
and validate client certs.

-mysql_server_ssl_cert string Path to the ssl cert for mysql server plugin SSL

-mysql_server_ssl_key string Path to ssl key for mysql server plugin SSL

-mysql__server__version string MySQL server version to advertise. (default “5.7.9-Vitess”)

-mysql_server_ write_ timeout duration connection write timeout

- duration Warn if it takes more than the given threshold for a mysql connection to

mysql_slow__connect_ warn_ threshold establish

-mysql_tcp__version string Select tep, tcp4, or tepb to control the socket type. (default “tep”)

-normalize_queries boolean Rewrite queries with bind vars. Turn this off if the app itself sends
normalized queries with bind vars. (default true)

-onterm__ timeout duration wait no more than this for OnTermSync handlers before stopping (default
10s)

-opentsdb__uri string URI of opentsdb /api/put method

-pid_file string If set, the process will write its pid to the named file, and delete it on
graceful shutdown.

-port int port for the server

-proxy__protocol boolean Enable HAProxy PROXY protocol on MySQL listener socket

-purge_logs_ interval duration how often try to remove old logs (default 1hOmOs)

-querylog-filter-tag string string that must be present in the query as a comment for the query to be
logged, works for both vtgate and vttablet

-querylog-format string format for query logs (“text” or “json”) (default “text”)

-redact-debug-ui-queries boolean redact full queries and bind variables from debug UI

-remote_ operation_ timeout duration time to wait for a remote operation (default 30s)

-retry-count int retry count (default 2)

-security__policy string the name of a registered security policy to use for controlling access to URLs
- empty means allow all for anyone (built-in policies: deny-all, read-only)

-service__map value comma separated list of services to enable (or disable if prefixed with ‘')
Example: grpc-vtworker

-sql-max-length-errors int truncate queries in error logs to the given length (default unlimited)

-sql-max-length-ui int truncate queries in debug Uls to the given length (default 512) (default 512)

-srv__topo_ cache_refresh duration how frequently to refresh the topology for cached entries (default 1s)

-srv__topo__cache_ ttl duration how long to use cached entries for topology (default 1s)

-stats_backend string The name of the registered push-based monitoring/stats backend to use

-stats__combine_dimensions string List of dimensions to be combined into a single “all” value in exported stats
vars

-stats__drop_ variables string Variables to be dropped from the list of exported variables.

-stats__emit_ period duration Interval between emitting stats to all registered backends (default 1m0s)

-stderrthreshold value logs at or above this threshold go to stderr (default 1)

-stream_ buffer size int the number of bytes sent from vtgate for each stream call. It’s
recommended to keep this value in sync with vttablet’s
query-server-config-stream-buffer-size. (default 32768)

-tablet_ filters value Specifies a comma-separated list of ’keyspace

-tablet_ grpc_ ca string the server ca to use to validate servers when connecting

-tablet__grpc_ cert string the cert to use to connect

-tablet__grpc_ key string the key to use to connect

-tablet__grpc_ server_name string the server name to use to validate server certificate

-tablet__protocol string how to talk to the vttablets (default “grpc”)

-tablet_refresh interval duration tablet refresh interval (default 1mOs)

-tablet_refresh known_ tablets boolean tablet refresh reloads the tablet address/port map from topo in case it

changes (default true)

189

Name Type Definition

-tablet_ types_ to_ wait string wait till connected for specified tablet types during Gateway initialization

-tablet_url template string format string describing debug tablet url formatting. See the Go code for
getTabletDebugURL() how to customize this. (default
“http://{{.GetTabletHostPort}}”)

- duration time of the long poll for watch queries. (default 30s)

topo__consul__watch_ poll_duration

-topo__eted_lease_ ttl int Lease TTL for locks and master election. The client will use KeepAlive to
keep the lease going. (default 30)

-topo__eted__tls_ca string path to the ca to use to validate the server cert when connecting to the etcd
topo server

-topo__eted__tls_ cert string path to the client cert to use to connect to the eted topo server, requires
topo_etcd_tls_key, enables TLS

-topo__eted_ tls_ key string path to the client key to use to connect to the etcd topo server, enables TLS

-topo__global__root string the path of the global topology data in the global topology server

-topo__global__server__address string the address of the global topology server

-topo__implementation string the topology implementation to use

-topo_ k8s_ context string The kubeconfig context to use, overrides the ‘current-context’ from the
config

-topo__k8s_ kubeconfig string Path to a valid kubeconfig file.

-topo__k8s namespace string The kubernetes namespace to use for all objects. Default comes from the
context or in-cluster config

-topo_ read__concurrency int concurrent topo reads (default 32)

-topo_ zk__auth_ file string auth to use when connecting to the zk topo server, file contents should be :,
e.g., digest:user:pass

-topo_zk base timeout duration zk base timeout (see zk.Connect) (default 30s)

-topo_ zk_max_ concurrency int maximum number of pending requests to send to a Zookeeper server.
(default 64)

-topo_zk_ tls_ ca string the server ca to use to validate servers when connecting to the zk topo server

-topo_zk_tls_ cert string the cert to use to connect to the zk topo server, requires topo_ zk_tls_ key,
enables TLS

-topo_ zk_ tls_ key string the key to use to connect to the zk topo server, enables TLS

-tracer string tracing service to use (default “noop”)

-tracing-sampling-rate float sampling rate for the probabilistic jaeger sampler (default 0.1)

-transaction_mode string SINGLE: disallow multi-db transactions, MULTI: allow multi-db

transactions with best effort commit, TWOPC: allow multi-db transactions
with 2pc commit (default “MULTT”)

-v value log level for V logs

-version boolean print binary version

-vmodule value comma-separated list of pattern=N settings for file-filtered logging

- string List of users authorized to execute vschema ddl operations, or ‘%’ to allow
vschema_ ddl authorized users all users.

-vtetld__addr string address of a vtctld instance

-vtgate-config-terse-errors boolean prevent bind vars from escaping in returned errors

-warn_ memory_ rows int Warning threshold for in-memory results. A row count higher than this

amount will cause the VtGateWarnings.ResultsExceeded counter to be
incremented. (default 30000)

vttablet

A VTTablet server controls a running MySQL server. VT Tablet supports two primary types of deployments:

o Managed MySQL (most common)
e Unmanaged or Remote MySQL

190

In addition to these deployment types, a partially managed VTTablet is also possible by setting -disable_active_reparents.

Example Usage

Managed MySQL In this mode, Vitess actively manages MySQL:

export TOPOLOGY_FLAGS="-topo_implementation etcd2 -topo_global_server_address
localhost:2379 -topo_global_root /vitess/global"
export VTDATAROOT="/tmp"

vttablet \

$TOPOLOGY_FLAGS

-tablet-path $alias

-init_keyspace $keyspace

-init_shard $shard

-init_tablet_type $tablet_type

-port $port

-grpc_port $grpc_port

-service_map 'grpc-queryservice,grpc-tabletmanager,grpc-updatestream'

$alias needs to be of the form: <cell>-id, and the cell should match one of the local cells that was created in the topology.
The id can be left padded with zeroes: cel1l-100 and cel1-000000100 are synonymous.

Unmanaged or Remote MySQL In this mode, an external MySQL can be used such as RDS, Aurora, CloudSQL:

mkdir -p $VTDATAROOT/vt_0000000401

vttablet \

$TOPOLOGY_FLAGS \

-logtostderr \

-log_queries_to_file $VTDATAROOT/tmp/vttablet_0000000401_querylog.txt \
-tablet-path "zonel-0000000401" \

-init_keyspace legacy \

-init_shard 0 \

-init_tablet_type replica \

-port 15401 \

-grpc_port 16401 \

-service_map 'grpc-queryservice,grpc-tabletmanager ,grpc-updatestream' \
-pid_file $VTDATAROOT/vt_0000000401/vttablet.pid \
-vtctld_addr http://localhost:15000/ \

-db_host 127.0.0.1 \

-db_port 5726 \

-db_app_user msandbox \

-db_app_password msandbox \

-db_dba_user msandbox \

-db_dba_password msandbox \

-db_repl_user msandbox \

-db_repl_password msandbox \

-db_filtered_user msandbox \

-db_filtered_password msandbox \

-db_allprivs_user msandbox \

-db_allprivs_password msandbox \
-init_db_name_override legacy \
-init_populate_metadata &

sleep 10
vtctlclient TabletExternallyReparented zonel-401

191

See Unmanaged Tablet for the full guide.

Options

The following global options apply to vttablet:

Name Type Definition

-alsologtostderr boolean log to standard error as well as files

-app__idle_ timeout duration Idle timeout for app connections (default 1mOs)

-app__pool__size int Size of the connection pool for app connections (default 40)

- string Path to a file containing the Azure Storage account key; if this flag is unset,

azblob__backup_ account_ key_ file

- string
azblob_ backup_ account_ name

- string
azblob__backup_ container name
-azblob_ backup_ parallelism int

-azblob_ backup_ storage root string

- string
backup__engine_implementation
-backup__storage_ block_ size int
-backup__storage compress
-backup__storage_hook string
- string
backup__storage_implementation

- int
backup_ storage number_ blocks
-binlog_ player_grpc_ ca string
-binlog_ player_grpc_ cert string
-binlog_ player_grpc_ key string
- string
binlog_ player_grpc_ server_name
-binlog_ player_ protocol string

binlog use_ v3_ resharding mode
-ceph_ backup_ storage_config string

-consul auth static_file string
-cpu__profile string
-datadog-agent-host string
-datadog-agent-port string
-db-credentials-file string
-db-credentials-server string
-db__allprivs_ password string

the environment variable VT _AZBLOB_ ACCOUNT KEY will be used as
the key itself (NOT a file path)

Azure Storage Account name for backups; if this flag is unset, the
environment variable VI AZBLOB ACCOUNT NAME will be used
Azure Blob Container Name

Azure Blob operation parallelism (requires extra memory when increased)
(default 1)

Root prefix for all backup-related Azure Blobs; this should exclude both
initial and trailing ¢/’ (e.g. just ‘a/b’ not ‘/a/b/’)

Specifies which implementation to use for creating new backups (builtin or
xtrabackup). Restores will always be done with whichever engine created a
given backup. (default “builtin”)

if backup_ storage compress is true, backup_ storage_block size sets the
byte size for each block while compressing (default is 250000). (default
250000)

if set, the backup files will be compressed (default is true). Set to false for
instance if a backup_ storage_hook is specified and it compresses the data.
(default true)

if set, we send the contents of the backup files through this hook.

which implementation to use for the backup storage feature

if backup__storage_compress is true, backup_ storage_number_ blocks sets
the number of blocks that can be processed, at once, before the writer
blocks, during compression (default is 2). It should be equal to the number
of CPUs available for compression (default 2)

the server ca to use to validate servers when connecting

the cert to use to connect

the key to use to connect

the server name to use to validate server certificate

the protocol to download binlogs from a vttablet (default “grpc”)

True iff the binlog streamer should use V3-style sharding, which doesn’t
require a preset sharding key column. (default true)

Path to JSON conlfig file for ceph backup storage (default

“ceph_ backup_ config.json”)

JSON File to read the topos/tokens from.

write cpu profile to file

host to send spans to. if empty, no tracing will be done

port to send spans to. if empty, no tracing will be done

db credentials file; send SIGHUP to reload this file

db credentials server type (use ‘file’ for the file implementation) (default
“file”)

db allprivs password

192

Name Type

Definition

-db__allprivs_ use_ ssl

-db__allprivs_ user string
-db__app_ password string
-db__app_ use_ ssl

-db__app_ user string
-db__appdebug_ password string

-db__appdebug_ use_ ssl

-db__appdebug_ user string
-db__charset string
-db_connect_ timeout ms int
-db__dba_ password string
-db_dba_ use_ ssl

-db__dba__user string
-db__erepl_password string

-db__erepl_use_ ssl

-db__erepl_user string
-db_filtered_ password string
-db_ filtered_use_ ssl

-db_ filtered user string
-db_ flags uint
-db_ flavor string
-db_ host string
-db__port int

-db_ repl_password string
-db_repl_use_ ssl

-db_repl user string
-db__server_ name string
-db_ socket string
-db_ssl ca string
-db_ssl_ca_ path string
-db_ssl cert string
-db_ssl_key string
-dba_idle timeout duration
-dba_ pool_size int
-degraded_ threshold duration
-demote_ master_ type string

-disable_ active reparents

- duration

Set this flag to false to make the allprivs connection to not use ssl (default
true)

db allprivs user userKey (default “vt_ allprivs”)

db app password

Set this flag to false to make the app connection to not use ssl (default true)
db app user userKey (default “vt_app”)

db appdebug password

Set this flag to false to make the appdebug connection to not use ssl
(default true)

db appdebug user userKey (default “vt_appdebug”)

Character set. Only utf8 or latinl based character sets are supported.
connection timeout to mysqld in milliseconds (0 for no timeout)

db dba password

Set this flag to false to make the dba connection to not use ssl (default true)
db dba user userKey (default “vt_dba”)

db erepl password

Set this flag to false to make the erepl connection to not use ssl (default
true)

db erepl user userKey (default “vt_erepl”)

db filtered password

Set this flag to false to make the filtered connection to not use ssl (default
true)

db filtered user userKey (default “vt_ filtered”)

Flag values as defined by MySQL.

Flavor overrid. Valid value is FilePos.

The host name for the tcp connection.

tep port

db repl password

Set this flag to false to make the repl connection to not use ssl (default true)
db repl user userKey (default “vt_repl”)

server name of the DB we are connecting to.

The unix socket to connect on. If this is specified, host and port will not be
used.

connection ssl ca

connection ssl ca path

connection ssl certificate

connection ssl key

Idle timeout for dba connections (default 1m0s)

Size of the connection pool for dba connections (default 20)

replication lag after which a replica is considered degraded (only used in
status UI) (default 30s)

the tablet type a demoted master will transition to (default “REPLICA”)
if set, do not allow active reparents. Use this to protect a cluster using
external reparents.

the replication lag that is considered too high when selecting the minimum

discovery__high_ replication_lag minimum_ semwimgttablets for serving (default 2h0mo0s)

- duration
discovery_low_ replication_ lag

-emit_ stats

-enable-consolidator
-enable-consolidator-replicas
-enable-query-plan-field-caching

-enable-tx-throttler

the replication lag that is considered low enough to be healthy (default 30s)

true iff we should emit stats to push-based monitoring/stats backends

This option enables the query consolidator. (default true)

This option enables the query consolidator only on replicas.

This option fetches & caches fields (columns) when storing query plans
(default true)

If true replication-lag-based throttling on transactions will be enabled.

193

Name

Type

Definition

-enable_hot_ row_ protection

enable__hot_ row_ protection_ dry_run

-enable_ replication_ reporter
-enable_semi_ sync

-enable_transaction_ limit

enable_transaction_ limit_ dry_ru
-enforce-tableacl-config

-enforce strict_ trans tables

-file__backup_ storage_root
-filecustomrules

n

string
string
duration

finalize_external reparent_ timeout

-gcs__backup__storage bucket
-gcs__backup_storage_root
-grpc_auth__mode

string
string
string
string

grpc_auth_mtls_allowed substrings

grpc_auth_static_ client_ creds
grpc_auth_static_ password_ file
-grpe_ca

-grpc__cert

-grpc__compression
-grpc__enable_ tracing
grpc_initial _conn_ window__ size
-grpc__initial _window__size
-grpc__keepalive_ time

-grpc_keepalive_timeout

-grpc_ key
-grpc_max_ connection_ age

grpc_max_ connection_age grace
-grpc__max_ message_ size

-grpc__port
-grpc__prometheus

string
string
string
string
string
int

int
duration

duration
string
duration
duration
int

int

int

grpc_server__initial _conn_ window__ size

If true, incoming transactions for the same row (range) will be queued and
cannot consume all txpool slots.

If true, hot row protection is not enforced but logs if transactions would
have been queued.

Register the health check module that monitors MySQL replication

Enable semi-sync when configuring replication, on master and replica
tablets only (rdonly tablets will not ack).

If true, limit on number of transactions open at the same time will be
enforced for all users. User trying to open a new transaction after
exhausting their limit will receive an error immediately, regardless of
whether there are available slots or not.

If true, limit on number of transactions open at the same time will be
tracked for all users, but not enforced.

if this flag is true, vttablet will fail to start if a valid tableacl config does not
exist

If true, vttablet requires MySQL to run with STRICT_TRANS_TABLES
or STRICT ALL_TABLES on. It is recommended to not turn this flag off.
Otherwise MySQL may alter your supplied values before saving them to the
database. (default true)

root directory for the file backup storage

file based custom rule path

Timeout for the finalize stage of a fast external reparent reconciliation.
(default 30s)

Google Cloud Storage bucket to use for backups

root prefix for all backup-related object names

Which auth plugin implementation to use (eg: static)

List of substrings of at least one of the client certificate names (separated by
colon).

when using grpc_static_auth in the server, this file provides the credentials
to use to authenticate with server

JSON File to read the users/passwords from.

ca to use, requires TLS, and enforces client cert check
certificate to use, requires grpc_ key, enables TLS

how to compress gRPC, default: nothing, supported: snappy
Enable GRPC tracing

grpc initial connection window size

grpc initial window size

After a duration of this time if the client doesn’t see any activity it pings
the server to see if the transport is still alive. (default 10s)

After having pinged for keepalive check, the client waits for a duration of
Timeout and if no activity is seen even after that the connection is closed.
(default 10s)

key to use, requires grpc_ cert, enables TLS

Maximum age of a client connection before GoAway is sent. (default
2562047h47m16.854775807s)

Additional grace period after grpc_max_ connection_ age, after which
connections are forcibly closed. (default 2562047h47m16.854775807s)
Maximum allowed RPC message size. Larger messages will be rejected by
gRPC with the error ‘exceeding the max size’. (default 16777216)

Port to listen on for gRPC calls

Enable gRPC monitoring with Prometheus

grpc server initial connection window size

194

Name Type Definition

- int grpc server initial window size

grpc_server__initial _window_ size

- duration grpe server minimum keepalive time (default 5m0s)

grpc_server_keepalive__enforcement_ policy__min__ time

- grpc server permit client keepalive pings even when there are no active

grpc_server_ keepalive_enforcement_ policy ptrenitis WRBGIs) stream

-health check interval duration Interval between health checks (default 20s)

-heartbeat enable If true, vttablet records (if master) or checks (if replica) the current time of
a replication heartbeat in the table _vt.heartbeat. The result is used to
inform the serving state of the vttablet via healthchecks.

-heartbeat__interval duration How frequently to read and write replication heartbeat. (default 1s)

- int Number of concurrent transactions let through to the txpool/MySQL for

hot_row_ protection__concurrent_ transactionshe same hot row. Should be > 1 to have enough ‘ready’ transactions in
MySQL and benefit from a pipelining effect. (default 5)

- int Global queue limit across all row (ranges). Useful to prevent that the queue

hot_row_ protection_max_ global queue_ sizean grow unbounded. (default 1000)

- int Maximum number of BeginExecute RPCs which will be queued for the

hot_ row__protection__max_ queue_ size same row (range). (default 20)

-init db_name override string (init parameter) override the name of the db used by vttablet. Without this
flag, the db name defaults to vt__

-init_ keyspace string (init parameter) keyspace to use for this tablet

-init_ populate metadata (init parameter) populate metadata tables even if restore_from_ backup is

disabled. If restore_ from_ backup is enabled, metadata tables are always
populated regardless of this flag.

-init_ shard string (init parameter) shard to use for this tablet

-init_ tablet_ type string (init parameter) the tablet type to use for this tablet.

-init_ tags value (init parameter) comma separated list of key:value pairs used to tag the
tablet

-init_ timeout duration (init parameter) timeout to use for the init phase. (default 1m0s)

-jaeger-agent-host string host and port to send spans to. if empty, no tracing will be done

-keep__logs duration keep logs for this long (using ctime) (zero to keep forever)

-keep_logs by mtime duration keep logs for this long (using mtime) (zero to keep forever)

-lameduck-period duration keep running at least this long after SSIGTERM before stopping (default
50ms)

- use the legacy algorithm when selecting the vttablets for serving (default

legacy_ replication_lag algorithm true)

-lock__tables__timeout duration How long to keep the table locked before timing out (default 1mOs)

-log_ backtrace_ at value when logging hits line file:N, emit a stack trace

-log_ dir string If non-empty, write log files in this directory

-log__err_ stacks log stack traces for errors

-log__queries Enable query logging to syslog.

-log_queries_ to_ file string Enable query logging to the specified file

-log_rotate max_ size uint size in bytes at which logs are rotated (glog.MaxSize) (default 1887436800)

-logtostderr log to standard error instead of files

-master__connect_ retry duration how long to wait in between replica reconnect attempts. Only precise to the
second. (default 10s)

-mem-profile-rate int profile every n bytes allocated (default 524288)

- int the minimum number of vttablets that will be continue to be used even with

min_ number_ serving vttablets low replication lag (default 2)

-mutex-profile-fraction int profile every n mutex contention events (see
runtime.SetMutexProfileFraction)

-mycnf-file string path to my.cnf, if reading all config params from there

-mycnf bin_log path string mysql binlog path

-mycnf data_ dir string data directory for mysql

-mycnf error_log path string mysql error log path

195

Name Type Definition

-mycnf general log path string mysql general log path

- string Innodb data home directory

mycnf innodb_data__home_ dir

- string Innodb log group home directory

mycnf innodb_log group_home_ dir

-mycnf master_info_ file string mysql master.info file

-mycnf mysql_port int port mysql is listening on

-mycnf_pid_ file string mysql pid file

-mycnf relay log index_path string mysql relay log index path

-mycnf_relay_log_info_ path string mysql relay log info path

-mycnf_relay log path string mysql relay log path

-mycnf server_id int mysql server id of the server (if specified, mycnf-file will be ignored)

-mycnf slow_log path string mysql slow query log path

-mycnf socket_ file string mysql socket file

-mycnf tmp_ dir string mysql tmp directory

- string JSON File to read the users/passwords from.

mysql_auth_ server_ static_ file

- string JSON representation of the users/passwords config.

mysql__auth_ server_ static_ string

- duration Ticker to reload credentials

mysql_auth_ static_ reload_ interval

- string client-side authentication method to use. Supported values:

mysql_ clientcert_auth_method mysql_clear_ password, dialog. (default “mysql_clear password”)

-mysql_server_flush_ delay duration Delay after which buffered response will flushed to client. (default 100ms)

-mysqlctl_ client_ protocol string the protocol to use to talk to the mysqletl server (default “grpe”)

-mysqlctl_mycnf template string template file to use for generating the my.cnf file during server init

-mysqlctl__socket string socket file to use for remote mysqlctl actions (empty for local actions)

-onterm__timeout duration wait no more than this for OnTermSync handlers before stopping (default
10s)

-opentsdb__uri string URI of opentsdb /api/put method

-orc__api_ password string (Optional) Basic auth password to authenticate with Orchestrator’s HTTP
APIL

-orc_api_url string Address of Orchestrator’s HTTP API (e.g. http://host:port/api/). Leave
empty to disable Orchestrator integration.

-orc_api_ user string (Optional) Basic auth username to authenticate with Orchestrator’s HTTP
API. Leave empty to disable basic auth.

-orc__discover__interval duration How often to ping Orchestrator’s HT'TP API endpoint to tell it we exist. 0
means never.

-orc__timeout duration Timeout for calls to Orchestrator’s HT' TP API (default 30s)

-pid__file string If set, the process will write its pid to the named file, and delete it on
graceful shutdown.

- duration if set force an update to all hostnames and reconnect if changed, defaults to

pool_hostname_resolve interval 0 (disabled)

-port int port for the server

-purge_logs_ interval duration how often try to remove old logs (default 1ThOm0s)

-query-log-stream-handler string URL handler for streaming queries log (default “/debug/querylog”)

-querylog-filter-tag string string that must be present in the query as a comment for the query to be
logged, works for both vtgate and vttablet

-querylog-format string format for query logs (“text” or “json”) (default “text”)

-queryserver-config-acl-exempt- string an acl that exempt from table acl checking (this acl is free to access any

acl
-queryserver-config-enable-
table-acl-dry-run

vitess tables).
If this flag is enabled, tabletserver will emit monitoring metrics and let the
request pass regardless of table acl check results

196

Name Type Definition

-queryserver-config-idle-timeout int query server idle timeout (in seconds), vttablet manages various mysql
connection pools. This config means if a connection has not been used in
given idle timeout, this connection will be removed from pool. This
effectively manages number of connection objects and optimize the pool
performance. (default 1800)

-queryserver-config-max-dml- int query server max dml rows per statement, maximum number of rows

TOWS allowed to return at a time for an update or delete with either 1) an
equality where clauses on primary keys, or 2) a subselect statement. For
update and delete statements in above two categories, vttablet will split the
original query into multiple small queries based on this configuration value.

-queryserver-config-max-result- int query server max result size, maximum number of rows allowed to return

size from vttablet for non-streaming queries. (default 10000)

-queryserver-config-message- int query server message postpone cap is the maximum number of messages

postpone-cap that can be postponed at any given time. Set this number to substantially
lower than transaction cap, so that the transaction pool isn’t exhausted by
the message subsystem. (default 4)

-queryserver-config- query server pass through all dml statements without rewriting

passthrough-dmls

-queryserver-config-pool-prefill- int query server read pool prefill parallelism, a non-zero value will prefill the

parallelism pool using the specified parallism.

-queryserver-config-pool-size int query server read pool size, connection pool is used by regular queries (non
streaming, not in a transaction) (default 16)

-queryserver-config-query- int query server query cache size, maximum number of queries to be cached.

cache-size vttablet analyzes every incoming query and generate a query plan, these
plans are being cached in a lru cache. This config controls the capacity of
the Iru cache. (default 5000)

-queryserver-config-query-pool- int query server query pool timeout (in seconds), it is how long vttablet waits

timeout for a connection from the query pool. If set to 0 (default) then the overall
query timeout is used instead.

-queryserver-config-query-pool- int query server query pool waiter limit, this is the maximum number of queries

waiter-cap that can be queued waiting to get a connection (default 5000)

-queryserver-config-query- int query server query timeout (in seconds), this is the query timeout in vttablet

timeout side. If a query takes more than this timeout, it will be killed. (default 30)

-queryserver-config-schema- int query server schema reload time, how often vttablet reloads schemas from

reload-time underlying MySQL instance in seconds. vttablet keeps table schemas in its
own memory and periodically refreshes it from MySQL. This config controls
the reload time. (default 1800)

-queryserver-config-stream- int query server stream buffer size, the maximum number of bytes sent from

buffer-size vttablet for each stream call. It’s recommended to keep this value in sync
with vtgate’s stream_ buffer_size. (default 32768)

-queryserver-config-stream- int query server stream pool prefill parallelism, a non-zero value will prefill the

pool-prefill-parallelism pool using the specified parallelism

-queryserver-config-stream- int query server stream connection pool size, stream pool is used by stream

pool-size queries: queries that return results to client in a streaming fashion (default
200)

-queryserver-config-strict-table- only allow queries that pass table acl checks

acl

-queryserver-config-terse-errors prevent bind vars from escaping in returned errors

-queryserver-config-transaction- int query server transaction cap is the maximum number of transactions

cap allowed to happen at any given point of a time for a single vttablet. E.g. by
setting transaction cap to 100, there are at most 100 transactions will be
processed by a vttablet and the 101th transaction will be blocked (and fail if
it cannot get connection within specified timeout) (default 20)

-queryserver-config-transaction- int query server transaction prefill parallelism, a non-zero value will prefill the

prefill-parallelism

pool using the specified parallism.

197

Name Type

Definition

-queryserver-config-transaction- int
timeout

-queryserver-config-txpool- int
timeout

-queryserver-config-txpool- int
waiter-cap

-queryserver-config-warn-result- int

size

-redact-debug-ui-queries

-remote_ operation_ timeout duration
-restore__concurrency int

-restore__from__backup

-s3__backup_aws__endpoint string
-s3__backup_aws_ region string
-s3__backup_ aws_ retries int
-s3_backup_ force path_ style
-s3__backup_ log level string
- string
s3__backup_ server_side_ encryption
-s3__backup_ storage_ bucket string
-s3__backup_ storage_ root string

s3__backup_ tls_skip_verify cert

-security__policy string
-service__map value
-serving_ state_ grace_ period duration
-shard__sync_ retry_ delay duration
-sql-max-length-errors int
-sql-max-length-ui int
-srv__topo__cache_ refresh duration
-srv__topo__cache_ ttl duration
-stats__backend string
-stats__combine dimensions string
-stats_ drop_ variables string
-stats__emit_ period duration
-stderrthreshold value
-table-acl-config string
-table-acl-config-reload-interval ~ duration
-tablet-path string
-tablet_ config string
-tablet dir string
-tablet_ grpc_ ca string
-tablet_ grpc_ cert string
-tablet__grpc_ key string

query server transaction timeout (in seconds), a transaction will be killed if
it takes longer than this value (default 30)

query server transaction pool timeout, it is how long vttablet waits if tx
pool is full (default 1)

query server transaction pool waiter limit, this is the maximum number of
transactions that can be queued waiting to get a connection (default 5000)
query server result size warning threshold, warn if number of rows returned
from vttablet for non-streaming queries exceeds this

redact full queries and bind variables from debug UI

time to wait for a remote operation (default 30s)

(init restore parameter) how many concurrent files to restore at once
(default 4)

(init restore parameter) will check BackupStorage for a recent backup at
startup and start there

endpoint of the S3 backend (region must be provided)

AWS region to use (default “us-east-17)

AWS request retries (default -1)

force the s3 path style

determine the S3 loglevel to use from LogOff, LogDebug,
LogDebugWithSigning, LogDebugWithHTTPBody,
LogDebugWithRequestRetries, LogDebugWithRequestErrors (default
“LogOff”)

server-side encryption algorithm (e.g., AES256, aws:kms)

S3 bucket to use for backups
root prefix for all backup-related object names
skip the ‘certificate is valid’ check for SSL connections

the name of a registered security policy to use for controlling access to URLs
- empty means allow all for anyone (built-in policies: deny-all, read-only)
comma separated list of services to enable (or disable if prefixed with ‘-*)
Example: grpc-vtworker

how long to pause after broadcasting health to vtgate, before enforcing a
new serving state

delay between retries of updates to keep the tablet and its shard record in
sync (default 30s)

truncate queries in error logs to the given length (default unlimited)
truncate queries in debug Uls to the given length (default 512) (default 512)
how frequently to refresh the topology for cached entries (default 1s)

how long to use cached entries for topology (default 1s)

The name of the registered push-based monitoring/stats backend to use
List of dimensions to be combined into a single “all” value in exported stats
vars

Variables to be dropped from the list of exported variables.

Interval between emitting stats to all registered backends (default 1m0s)
logs at or above this threshold go to stderr (default 1)

path to table access checker config file; send SIGHUP to reload this file
Ticker to reload ACLs

tablet alias

YAML file config for tablet

The directory within the vtdataroot to store vttablet/mysql files. Defaults
to being generated by the tablet uid.

the server ca to use to validate servers when connecting

the cert to use to connect

the key to use to connect

198

Name Type Definition

-tablet_ grpc_ server_name string the server name to use to validate server certificate

-tablet__hostname string if not empty, this hostname will be assumed instead of trying to resolve it

-tablet__manager grpc_ ca string the server ca to use to validate servers when connecting

-tablet__manager_grpc_ cert string the cert to use to connect

- int concurrency to use to talk to a vttablet server for performance-sensitive

tablet_manager grpc concurrency RPCs (like ExecuteFetchAs{Dba,AllPrivs,App}) (default 8)

-tablet__manager grpc_ key string the key to use to connect

- string the server name to use to validate server certificate

tablet__manager_grpc_server name

-tablet_ manager_ protocol string the protocol to use to talk to vttablet (default “grpc”)

-tablet_ protocol string how to talk to the vttablets (default “grpc”)

-tablet_url template string format string describing debug tablet url formatting. See the Go code for
getTabletDebugURL() how to customize this. (default
“http://{{.GetTabletHostPort}}”)

- duration time of the long poll for watch queries. (default 30s)

topo__consul__watch_ poll_duration

-topo__eted_lease_ ttl int Lease TTL for locks and master election. The client will use KeepAlive to
keep the lease going. (default 30)

-topo__eted_tls_ ca string path to the ca to use to validate the server cert when connecting to the etcd
topo server

-topo__eted__tls_ cert string path to the client cert to use to connect to the eted topo server, requires
topo__etcd_ tls_ key, enables TLS

-topo__eted_ tls_ key string path to the client key to use to connect to the eted topo server, enables TLS

-topo__global_root string the path of the global topology data in the global topology server

-topo__global__server_address string the address of the global topology server

-topo__implementation string the topology implementation to use

-topo_ k8s_ context string The kubeconfig context to use, overrides the ‘current-context’ from the
config

-topo__k8s_ kubeconfig string Path to a valid kubeconfig file.

-topo__k8s namespace string The kubernetes namespace to use for all objects. Default comes from the
context or in-cluster config

-topo_ zk auth_ file string auth to use when connecting to the zk topo server, file contents should be :,
e.g., digest:user:pass

-topo_ zk_base_ timeout duration zk base timeout (see zk.Connect) (default 30s)

-topo_ zk max__concurrency int maximum number of pending requests to send to a Zookeeper server.
(default 64)

-topo_zk_tls_ ca string the server ca to use to validate servers when connecting to the zk topo server

-topo_zk_tls_cert string the cert to use to connect to the zk topo server, requires topo_ zk tls_key,
enables TLS

-topo_zk_tls key string the key to use to connect to the zk topo server, enables TLS

-topocustomrule_ cell string topo cell for customrules file. (default “global”)

-topocustomrule_path string path for customrules file. Disabled if empty.

-tracer string tracing service to use (default “noop”)

-tracing-sampling-rate float sampling rate for the probabilistic jaeger sampler (default 0.1)

-transaction-log-stream-handler string

transaction_ limit_ by __component

transaction_ limit_ by _ principal

transaction_ limit_ by subcomponent

transaction_ limit_ by _username
-transaction_ limit_ per_ user float

URL handler for streaming transactions log (default “/debug/txlog”)
Include CallerID.component when considering who the user is for the
purpose of transaction limit.

Include CallerID.principal when considering who the user is for the purpose
of transaction limit. (default true)

Include CallerID.subcomponent when considering who the user is for the
purpose of transaction limit.

Include VT GateCallerID.username when considering who the user is for the
purpose of transaction limit. (default true)

Maximum number of transactions a single user is allowed to use at any
time, represented as fraction of -transaction_ cap. (default 0.4)

199

Name Type

Definition

- int
transaction_ shutdown__grace_ period

-twopc__abandon__age float
-twopc__coordinator__address string
-twopc__enable

-tx-throttler-config string
-tx-throttler-healthcheck-cells value
-unhealthy_ threshold duration
-use_super_read_ only

-V value
-version

-vmodule value

- duration
vreplication__healthcheck retry_ delay

- duration
vreplication_healthcheck timeout

- duration

vreplication__healthcheck topology refresh

-vreplication_ retry_delay duration
-vreplication__tablet_ type string
-vstream__packet_ size int
-vtetld_addr string
-vtgate_ protocol string
-wait_ for_ backup__interval duration
-watch_ replication_ stream

-xbstream_ restore_ flags string
-xtrabackup_ backup_ flags string
-xtrabackup_ prepare_flags string
-xtrabackup_ root_ path string
-xtrabackup__stream_ mode string
-xtrabackup_ stripe_ block size uint

how long to wait (in seconds) for transactions to complete during graceful
shutdown.

time in seconds. Any unresolved transaction older than this time will be
sent to the coordinator to be resolved.

address of the (VT'Gate) process(es) that will be used to notify of
abandoned transactions.

if the flag is on, 2pc is enabled. Other 2pc flags must be supplied.

The configuration of the transaction throttler as a text formatted
throttlerdata.Configuration protocol buffer message (default

“target_ replication_ lag sec: 2 max_ replication_lag sec: 10 initial_rate:
100 max_ increase: 1 emergency_ decrease: 0.5
min_duration between increases sec: 40

max_ duration_between increases sec: 62

min_ duration_ between__decreases_sec: 20 spread_ backlog_across_sec: 20
age_bad_rate_ after_sec: 180 bad_ rate_increase: 0.1

max_ rate_approach_ threshold: 0.9”)

A comma-separated list of cells. Only tabletservers running in these cells
will be monitored for replication lag by the transaction throttler.
replication lag after which a replica is considered unhealthy (default 2h0mOs)
Set super_read_ only flag when performing planned failover.

log level for V logs

print binary version

comma-separated list of pattern=N settings for file-filtered logging
healthcheck retry delay (default 5s)

healthcheck retry delay (default 1mOs)
refresh interval for re-reading the topology (default 30s)

delay before retrying a failed binlog connection (default 5s)

comma separated list of tablet types used as a source (default “REPLICA”)
Suggested packet size for VReplication streamer. This is used only as a
recommendation. The actual packet size may be more or less than this
amount. (default 30000)

address of a vtctld instance

how to talk to vtgate (default “grpc”)

(init restore parameter) if this is greater than 0, instead of starting up
empty when no backups are found, keep checking at this interval for a
backup to appear

When enabled, vttablet will stream the MySQL replication stream from the
local server, and use it to support the include_event_ token ExecuteOptions.
flags to pass to xbstream command during restore. These should be space
separated and will be added to the end of the command. These need to
match the ones used for backup e.g. —compress / —decompress, —encrypt /
—decrypt

flags to pass to backup command. These should be space separated and will
be added to the end of the command

flags to pass to prepare command. These should be space separated and will
be added to the end of the command

directory location of the xtrabackup executable, e.g., /usr/bin

which mode to use if streaming, valid values are tar and xbstream (default
LLtar”)

Size in bytes of each block that gets sent to a given stripe before rotating to
the next stripe (default 102400)

200

Name Type Definition

-xtrabackup_ stripes uint If greater than 0, use data striping across this many destination files to
parallelize data transfer and decompression
-xtrabackup__user string User that xtrabackup will use to connect to the database server. This user
must have all necessary privileges. For details, please refer to xtrabackup
documentation.
VReplication

description: Command references, architecture and design docs

DropSources

description: Cleans up after a MoveTables and Reshard workflow

DropSources [-dry_run] [-rename_tables] <keyspace.workflow>

Description Once SwitchWrites has been run DropSources cleans up the source resources by deleting the source tables for a
MoveTables workflow or source shards for a Reshard workflow. It also cleans up other artifacts of the workflow, deleting forward
and reverse replication streams and blacklisted tables.

Warning: This command actually deletes data. We recommend that you run this with the -dry_ run parameter first and reads
its output so that you know which actions will be performed.

Parameters

-rename__tables optional
default all

Only applies for a MoveTables workflow. Instead of deleting the tables in the source it renames them by prefixing the tablename
with an __ (underscore).

-dry-run optional
default false

You can do a dry run where no actual action is taken but the command logs all the actions that would be taken by SwitchReads.

keyspace.workflow mandatory

Name of target keyspace and the associated workflow to run VDiff on.

Life of a stream

Introduction The diagram above outlines how a VReplication workflow is performed. VReplication can be asked to start
from a specific GTID or from the start. When starting from a GTID the replication mode is used where it streams events from
the binlog.

201

< Snapshot >

[Fast Forward 1

Bulk Copy

- Copy Phase Detail

Sy

S

S

-

Start GTID
specified?

-

Initialize

S
Bulk .

Inserts/VEvents ;1

Copy

Realtime
Inserts/VEvents

—

Catchup

More to
copy?

Yes

Replicate [

—

Realtime

[}

No

Basic VReplication Flow

Figure 4: VReplication Flow

202

Inserts/VEvents

Full table copy When starting from the beginning the simple streaming done by replication can create an avalanche of events
(think 10s of millions of rows). To speed things up a copy/catchup mode is initiated first: data in the tables are copied over in
a consistent manner using bulk inserts. Once we have copied enough data so that we are close enough to the current position
(when replication lag is low) it switches over (and stays in) the replication mode.

While we may have multiple database sources in a workflow each vstream has just one source and one target. The source is
always a vttablet (and hence one mysql instance). The target could be another vttablet (resharding) or a streaming grpc response
(vstream api clients).

Transformation and Filtering Note that for all steps the data selected from the source will only be from the list of tables
specified (specified via Match). Furthermore if a Filter is specified for a table it will be applied before being sent to the target.
Columns may also be transformed in the Filter’s select clause.

Source and Sink FEach stream has two parts. The target initiates streaming by making grpc calls to the source tablet. The
source sources the data connecting to mysql as a slave or using sql queries and streams it to the target. The target takes
appropriate action: in case of resharding it will convert the events into CRUDs and apply it to the target database. In case of
vstream clients the events are forwarded by vtgate to the client.

Note that the target always pulls the data. This ensures that there is no problems of buffer overruns that can occur if the source
is pushing the data since (especially in sharding) it is possible that the application of events can be substantially cpu intensive
especially in the case of bulk inserts.

Modes, in detail

Replicate This is the easiest step to understand. The source stream just mimics a mysql slave and processes events as they
are received. Events (after filtering and transformation) are sent to the target. Replication runs continuously with short sleeps
when there are no more events to source.

Initialize Initialize is called at the start of the copy phase. For each table to be copied an entry is created in _ vt.copy_ state
with a zero primary key. As each table copy is completed the related entry is deleted and when there are no more entries for
this workflow the copy phase is considered complete and the workflow moves into the Replication mode.

Copy Copy works on one table at a time. The source selects a set of rows from the table with higher primary keys that the
one copied so far using a consistent snapshot. This results in a stream of rows to be sent to the target which generates a bulk
insert of these rows.

However there are a couple of factors which complicate our story::

e Each copy selects all rows until the current position of the binlog.
 Since transactions continue to be applied (presuming the database is online) the gtid positions are continuously moving
forward

Consider this example.

We have two tables t1 and t2 and this is how the copy state proceeds: Each has 20 rows and we copy 10 rows at a time. (Queries
are not exact but simplified for readability).

If we follow this we get:

Tl: select * from tl where pk > O limit 10. GTID: 100, Last PK 10
send rows to target
T2: select * from tl where pk > 10 limit 10 GTID: 110, Last PK 20

send rows to target

203

Gotcha: however we see that 10 new txs have occurred since T1. Some of these can potentially modify the rows returned from
the query at T1. Hence if we just return the rows from T2 (which have only rows from pk 11 to 20)
we will have an inconsistent state on the target: the updates to rows with PK between 1 and 10 will not be present.

This means that we need to first stream the events between 100 to 110 for PK between 1 and 10 first and then do the second
select:

Tl: select * from tl where pk > O 1limit 10. GTID: 100, Last PK 10
send rows to target

T2: replicate from 100 to current position (110 from previous example),
only pass events for pks 1 to 10

T3: select * from tl where pk > 10 limit 10 GTID: 112, Last PK 20

send rows to target
Another gotcha!: Note that at T3 when we selected the pks from 11 to 20 the gtid position has moved further! This happened

because of transactions that were applied between T2 and T3. So if we just applied the rows from T3 we would still have an
inconsistent state, if transactions 111 and 112 affected the rows from pks 1 to 10.

This leads us to the following flow:

Tl: select * from tl1 where pk > O limit 10. GTID: 100, Last PK 10
send rows to target

T2: replicate from 100 to current position (110 from previous example),
only pass events for pks 1 to 10

T3: select * from tl where pk > 10 limit 10 GTID: 112, Last PK 20

T4: replicate from 111 to 112
only pass events for pks 1 to 10

T5: Send rows for pks 11 to 20 to target

This flow actually works!

T1 can take a long time (due to the bulk inserts). T3 (which is just a snapshot) is quick. So the position can diverge much more
at T2 than at T4. Hence we call the step in T2 as Catchup and Step T4 is called Fast Forward.

Catchup As detailed above the catchup phase runs between two copy phases. During the copy phase the gtid position can
move significantly ahead. So we run a replicate till we come close to the current position i.e.the replication lag is small. At this
point we call Copy again.

Fast forward During the copy phase we first take a snapshot. Then we fast forward: we run another replicate from the gtid
position where we stopped the Catchup to the position of the snapshot.

Finally once we have finished copying all the tables we proceed to replicate until our job is done: for example if we have resharded
and switched over the reads and writes to the new shards or when the vstream client closes its connection.

Materialize

description:

204

Materialize <json_spec>

Description Materialize is a low level vreplication API that allows for generalized materialization of tables. The target tables
can be copies, aggregations or views. The target tables are kept in sync in near-realtime.

You can specify multiple tables to materialize using the json_ spec parameter.

Parameters

JSON spec details

o workflow name to refer to this materialization

o source__keyspace keyspace containing the source table

e target keyspace keyspace to materialize to

o table_settings list of views to be materialized and the associated query

— target_table name of table to which to materialize the data to
— source__expression the materialization query

Materialize '{"workflow": "product_sales", "source_keyspace": "commerce",
"target_keyspace": "customer",
"table_settings": [{"target_table": "sales_by_sku",
"source_expression": "select sku, count(*), sum(price) from corder group by

order_id"}]1}'

A Materialize Workflow Once you decide on your materialization requirements, you need to initiate a VReplication workflow
as follows:

1. Initiate the migration using Materialize
2. Monitor the workflow using Workflow or VExec
3. Start accessing your views once the workflow has started Replicating

Notes There are special commands to perform common materialization tasks and you should prefer them to using Materialize
directly. * If you just want to copy tables to a different keyspace use MoveTables. * If you want to change sharding strategies
use Reshard instead

MoveTables

description: Move tables between keyspaces without downtime

MoveTables [-cells=<cells>] [-tablet_types=<source_tablet_types>] -workflow=<workflow>
<source_keyspace> <target_keyspace> <table_specs>

205

Description MoveTables is used to start a workflow to move one or more tables from an external database or an existing
Vitess keyspace into a new Vitess keyspace. The target keyspace can be unsharded or sharded.

MoveTables is used typically for migrating data into Vitess or to implement vertical sharding. You might use the former when
you first start using Vitess and the latter if you want to distribute your load across servers.

Parameters

-cells optional
default local cell

A comma separated list of cell names or cell aliases. This list is used by VReplication to determine which cells should be used
to pick a tablet for selecting data from the source keyspace.

Uses

e Improve performance by using picking a tablet in cells in network proximity with the target
e To reduce bandwidth costs by skipping cells which are in different availability zones
e Select cells where replica lags are lower

-tablet_ types optional
default replica

A comma separated list of tablet types that are used while picking a tablet for sourcing data. One or more from MASTER,
REPLICA, RDONLY.

Uses

e To reduce load on master tablets by using REPLICAs or RDONLYs
¢ Reducing lags by pointing to MASTER

workflow mandatory

Unique name for the MoveTables-initiated workflow, used in later commands to refer back to this workflow

source__keyspace mandatory

Name of existing keyspace that contains the tables to be moved

target_ keyspace mandatory

Name of existing keyspace to which the tables will be moved

table__specs mandatory

One of

« comma separated list of tables (if vschema has been already specified for all the tables)
e JSON table section of the vschema for associated tables in case vschema is not yet specified

206

A MoveTables Workflow Once you select the set of tables to move from one keyspace to another you need to initiate a
VReplication workflow as follows:

Initiate the migration using MoveTables

Monitor the workflow using Workflow or VExec

Confirm that data has been copied over correctly using VDiff

Start the cutover by routing all reads from your application to those tables using SwitchReads
Complete the cutover by routing all writes using SwitchWrites

Optionally cleanup the source tables using DropSources

SN

Common use cases for MoveTables

Adopting Vitess For those wanting to try out Vitess for the first time MoveTables provides an easy way to route part of
their workload to Vitess with the ability of migrating back at any time without any risk. You point a vttablet to your existing
MySQL installation, spin up a unsharded Vitess cluster and use a MoveTables workflow to start serving some tables from Vitess.
You can also go further and use a Reshard workflow to experiment with a sharded version of a part of your database.

See user guide for detailed steps
Horizontal Sharding For existing Vitess users you can easily move one or more tables to another keyspace, either for balancing

load or as a preparation to sharding your tables.

See user guide which describes how MoveTables works in the local example provided in the Vitess repo.

More Reading

e MoveTables in practice

Reshard

description: split or merge shards in a keyspace

Reshard [-skip_schema_copy] <keyspace.workflow> <source_shards> <target_shards>

Description Reshard support horizontal sharding by letting you change the sharding ranges of your existing keyspace.
Parameters

-skip__schema_ copy optional

default false

If true the source schema is copied to the target shards. If false, you need to create the tables before calling reshard.

keyspace.workflow mandatory

Name of keyspace being sharded and the associated workflow name, used in later commands to refer back to this reshard.

source__shards mandatory

Comma separated shard names to reshard from.

207

target_ shards mandatory

Comma separated shard names to reshard to.

A Reshard Workflow Once you decide on the new resharding strategy for a keyspace, you need to initiate a VReplication
workflow as follows:

Initiate the migration using Reshard

Monitor the workflow using Workflow or VExec

Confirm that data has been copied over correctly using VDiff

Start the cutover by routing all reads from your application to those tables using SwitchReads
Complete the cutover by routing all writes using SwitchWrites

Optionally cleanup the source tables using DropSources

S

SwitchReads

description: Route reads to target keyspace

SwitchReads [-cells=<cells>] [-reverse] [-dry-run]
-tablet_type={replicalrdonly} <keyspace.workflow>

Description SwitchReads is used to switch reads for tables in a MoveTables workflow or for entire keyspace to the target
keyspace in a Reshard workflow.

Parameters

-cells optional
default all

Comma separated list of cells or cell aliases in which reads should be switched in the target keyspace

-reverse optional
default false

When a workflow is setup the routing rules are setup so that reads/writes to the target shards still go to the source shard since
the target is not yet setup. If SwitchReads is called without -reverse then the routing rules for the target keyspace are setup to
actually use it. It is assumed that the workflow was successful and user is ready to use the target keyspace now.

However if, for any reason, we want to abort this workflow using the -reverse flag deletes the rules that were setup and vtgate
will route the queries to this table to the the source table. There is no way to reverse the use of the -reverse flag other than by
recreating the routing rules again using the vtctl ApplyRoutingRules command.

-dry-run optional
default false

You can do a dry run where no actual action is taken but the command logs all the actions that would be taken by SwitchReads.

-tablet_ type mandatory

On which type of tablets should be reads be switched to the target keyspace. One of replica or rdonly. rdonly tables should be
switched first before replica tablets.

208

keyspace.workflow mandatory

Name of target keyspace and the associated workflow to SwitchReads for.

SwitchWrites

description: Route writes to target keyspace in a vreplication workflow

SwitchWrites [-filtered_replication_wait_time=30s] [-cancel] [-reverse_replication=truel
[-dry-run] <keyspace.workflow>

Description SwitchWrites is used to switch writes for tables in a MoveTables workflow or for entire keyspace in the Reshard
workflow away from the master in the source keyspace to the master in the target keyspace

Parameters

-filtered__replication__ wait_ time optional
default 30s

SwitchWrites first stops writes on the source master and waits for the replication to the target to catchup with the point where
the writes were stopped. If the wait time is longer than filtered_ replication_ wait_ time the command will error out. For setups
with high write gps you may need to increase this value.

-cancel optional
default false

If a previous SwitchWrites returned with an error you can restart it by running the command again (after fixing the issue that
caused the failure) or the SwitchWrites can be canceled using this parameter. Only the SwitchWrites is cancelled: the workflow
is set to Running so that replication continues.

-reverse__replication optional
default true

SwitchWrites, by default, starts a reverse replication stream with the current target as the source, replicating back to the original
source. This enables a quick and simple rollback. This reverse workflow name is that of the original workflow concatenated with
_reverse.

-dry-run optional
default false

You can do a dry run where no actual action is taken but the command logs all the actions that would be taken by SwitchReads.

keyspace.workflow mandatory

Name of target keyspace and the associated workflow to SwitchWrites for.

VDift

description: Compare the source and target in a workflow to ensure integrity

209

VDiff [-source_cell=<cell>] [-target_cell=<cell>] [-tablet_types=replical
[-filtered_replication_wait_time=30s] <keyspace.workflow>

Description VDiff does a row by row comparison of all tables associated with the workflow, diffing the source keyspace and
the target keyspace and reporting counts of missing/extra/unmatched rows.

It is highly recommended that you do this before you finalize a workflow with SwitchWrites.

Parameters

-source__cell optional
default all

VDiff will choose a tablet from this cell to diff the source table(s) with the target tables

-target__cell optional
default all

VDiff will choose a tablet from this cell to diff the source table(s) with the target tables

-tablet_ types optional
default replica

A comma separated list of tablet types that are used while picking a tablet for sourcing data. One or more from MASTER,
REPLICA, RDONLY.

-filtered__replication__wait__time optional
default 30s

VDiff finds the current position of the source master and then waits for the target replication to reach that position for fil-
tered__replication__wait__time. If the target is much behind the source or if there is a high write qps on the source then this time
will need to be increased.

keyspace.workflow mandatory

Name of target keyspace and the associated workflow to run VDiff on.

$ vtctlclient VDiff customer.commerce2customer

Summary for corder: {ProcessedRows:10 MatchingRows:10 MismatchedRows:0 ExtraRowsSource:0
ExtraRowsTarget :0}

Summary for customer: {ProcessedRows:11 MatchingRows:11 MismatchedRows:0 ExtraRowsSource:0
ExtraRowsTarget :0}

210

Notes
¢ You can follow the progress of the command by tailing the vtctld logs
o VDiff can take very long (hours/days) for huge tables, so this needs to be taken into account. If VDiff takes more than an
hour and you use vtctlclient then it will hit the grpc/http default timeout of 1 hour. In that case you can use vtctl (the
bundled vctlclient + vtetld) instead.

e There is no throttling, so you might see an increased lag in the replica used as the source.

VReplication and VDiff performance improvements as well as freno-style throttling support are on the roadmap!

VExec

description: Wrapper on VReplicationExec to run query on all participating masters

VExec [-dry_run] <keyspace.workflow> <query>

Description VExec is a wrapper over VReplicationExec. Given a workflow it executes the provided query on all masters in
the target keyspace that participate in the workflow. Internally it calls VReplicationExec for running the query.

Parameters

-dry-run optional
default false

You can do a dry run where no actual action is taken but the command logs the queries and the tablets on which the query
would be run. by VExec.

keyspace.workflow mandatory

Name of target keyspace and the associated workflow

sql query mandatory

SQL query to be run: validations are done to ensure that queries can be run only against vreplication tables. A limited set of
queries are allowed.

vtctlclient VExec keyspacel.workflowl 'select * from _vt.vreplication'

Overview

description: VReplication features, design and options in a nutshell

VReplication is a core component of Vitess that can be used to compose many features. It can be used for the following use
cases:

211

¢ Resharding: Legacy workflows of vertical and horizontal resharding. New workflows of resharding from an unsharded to
a sharded keyspace and vice-versa. Resharding from an unsharded to an unsharded keyspace using a different vindex than
the source keyspace.

e Materialized Views: You can specify a materialization rule that creates a view of the source table into a target keyspace.
This materialization can use a different primary vindex than the source. It can also materialize a subset of the source
columns, or add new expressions from the source. This view will be kept up-to-date in real time. One can also materialize
reference tables onto all shards and have Vitess perform efficient local joins with those materialized tables.

¢ Realtime rollups: The materialization expression can include aggregation expressions in which case, Vitess will create a
rolled up version of the source table which can be used for realtime analytics.

o Backfilling lookup vindexes: VReplication can be used to backfill a newly created lookup vindex. Workflows can be
built to manage the switching from a backfill mode to the vindex itself keeping it up-to-date.

¢ Schema deployment: VReplication can be used to recreate the workflow performed by gh-ost and thereby support
zero-downtime schema deployments in Vitess natively.

e Data migration: VReplication can be setup to migrate data from an existing system into Vitess. The replication could
also be reversed after a cutover giving you the option to rollback a migration cutover if something went wrong, without
losing the writes to the migration target.

e Change notification: The streamer component of VReplication can be used for the application or a systems operator to
subscribe to change notification and use it to keep downstream systems up-to-date with the source.

The VReplication feature itself is a fairly low level one that is expected to be used as a building block for the above use cases.
However, it is still possible to directly issue commands to perform some of the activities.

Feature description

VReplication works as a stream or set of streams. Each stream establishes a replication from a source keyspace/shard into a
target keyspace/shard.

A given stream can replicate multiple tables. For each table, you can specify a SELECT statement that represents both the
transformation rule and the filtering rule. The SELECT expressions specify the transformation, and the WHERE clause specifies the
filtering.

The SELECT expressions can be any non-aggregate MySQL expression, or they can also be COUNT or SUM as aggregate expressions.
Aggregate expressions combined with the corresponding GROUP BY clauses will allow you to materialize real-time rollups of the
source table, which can be used for analytics. The target table can have a different name from the source.

For a sharded system like Vitess, multiple VReplication streams may be needed to achieve the objective. This is because there
can be multiple source shards and multiple destination shards, and the relationship between them may not be one to one.

VReplication performs the following essential functions:

e Copy data from the source to the destination table in a consistent fashion. For a large table, this copy can be long-running.
It can be interrupted and resumed. If interrupted, VReplication can keep the copied portion up-to-date with respect to
the source, and it can resume the copy process at a point that is consistent with the current replication position.

o After copying is finished, it can continuously replicate the data from the source to destination.

e The copying rule can be expressed as a SELECT statement. The statement should be simple enough that the materialized
table can be kept up-to-date from the data coming from the binlog. For example, joins in the SELECT statement are not
supported.

o Correctness verification (to be implemented): VReplication can verify that the target table is an exact representation of
the SELECT statement from the source by capturing consistent snapshots of the source and target and comparing them
against each other. This step can be done without the need to create special snapshot replicas.

e Journaling: If there is any kind of traffic cut-over where we start writing to a different table than we used to before,
VReplication will save the current binlog positions into a journal table. This can be used by other streams to resume
replication from the new source.

212

¢ Routing rules: Although this feature is itself not a direct functionality of VReplication, it works hand in hand with it. It
allows you to specify sophisticated rules about where to route queries depending on the type of workflow being performed.
For example, it can be used to control the cut-over during resharding. In the case of materialized views, it can be used to
establish equivalence of tables, which will allow VT Gate to compute the most optimal plans given the available options.

VReplicationExec

The VReplicationExec command is a low-level command used to manage VReplication streams. The commands are issued as
SQL statements. For example, a SELECT can be used to see the current list of streams. An INSERT can be used to create one,
etc. By design, the metadata for vreplication streams are stored in a table called vreplication in the _vt sidecar database.
VReplication uses a ‘pull”’ model. This means that a stream is created on the target side, and the target pulls the data by finding
the appropriate source. As a result, this metadata is stored on the target shard.

The table schema is as follows:

CREATE TABLE _vt.vreplication (
id INT AUTO_INCREMENT,
workflow VARBINARY (1000),
source VARBINARY (10000) NOT NULL,
pos VARBINARY (10000) NOT NULL,
stop_pos VARBINARY (10000) DEFAULT NULL,
max_tps BIGINT(20) NOT NULL,
max_replication_lag BIGINT(20) NOT NULL,
cell VARBINARY (1000) DEFAULT NULL,
tablet_types VARBINARY (100) DEFAULT NULL,
time_updated BIGINT(20) NOT NULL,
transaction_timestamp BIGINT (20) NOT NULL,
state VARBINARY (100) NOT NULL,
message VARBINARY (1000) DEFAULT NULL,
db_name VARBINARY (255) NOT NULL,
PRIMARY KEY (id)

)

The fields are explained in the following section.

This is the syntax of the command:

VReplicationExec [-json] <tablet alias> <sql command>

Here’s an example of the command to list all existing streams for a given tablet.

vtctlclient -server localhost:15999 VReplicationExec 'tablet-100' 'select * from
_vt.vreplication'

Creating a stream It’s generally easier to send the VReplication command programmatically instead of a bash script. This
is because of the number of nested encodings involved:

e One of the arguments is an SQL statement, which can contain quoted strings as values.
¢ One of the strings in the SQL statement is a string encoded protobuf, which can contain quotes.
e One of the parameters within the protobuf is an SQL SELECT expression for the materialized view.

However, you can use vreplgen.go to generate a fully escaped bash command.

Alternately, you can use a python program. Here’s an example:

213

https://github.com/vitessio/contrib/blob/master/vreplgen/vreplgen.go

cmd

= [

'vtctlclient',

'-server',

'localhost:15999"',

'VReplicationExec',

'test-200",

"""insert into _vt.vreplication

(db_mname, source, pos, maz_tps, maz_replication_lag, tablet_types, time_updated,

transaction_timestamp, state) wvalues

('vt_keyspace', 'keyspace:"lookup" shard:"0" filter:<rules:<match:"uproduct"

]

filter:"select * from product”" > >', '', 99999, 99999, 'master', 0, 0, 'Running')""",

The first argument to the command is the master tablet id of the target keyspace/shard for the VReplication stream.

The second argument is the SQL command. To start a new stream, you need an insert statement. The parameters are as follows:

db_name: This name must match the name of the MySQL database. In the future, this will not be required, and will be
automatically filled in by the vttablet.

source: The protobuf representation of the stream source, explained below.

pos: For a brand new stream, this should be empty. To start from a specific position, a flavor-encoded position must be
specified. A typical position would look like this MySQL56/ac6c45eb-71c2-11e9-92ea-0a580a1c1026:1-1296
max_tps: 99999, reserved.

max_replication_lag: 99999, reserved.

tablet_types: specifies a comma separated list of tablet types to replicate from. If empty, the default tablet type specified
by the -vreplication_tablet_type command line flag is used, which in turn defaults to ‘REPLICA”.
time_updated: 0, reserved.

transaction_timestamp: 0, reserved.

state: ‘Init’, ‘Copying’, ‘Running’, ‘Stopped’, ‘Error’.

cell: is an optional parameter that specifies the cell from which the stream can be sourced. If no cell is specified, the
default is the local/current cell.

The source field The source field is a proto-encoding of the following structure:

message BinlogSource {
// the source keyspace
string keyspace = 1;
// the source shard
string shard = 2;
// list of filtering rules
Filter filter = 6;
// what to do if a DDL is encountered
OnDDLAction on_ddl = 7;

3

message Filter {
repeated Rule rules = 1;

}

message Rule {
// match can be a table name or a regular expression
// delineated by '/' and '/'.
string match = 1;
// filter can be an empty string or keyrange if the match
// is a regular expression. Otherwise, it must be a select
// query.
string filter = 2;

214

}

enum OnDDLAction {

IGNORE = 0;
STOP = 1;
EXEC = 2;

EXEC_IGNORE = 3;
}

Here are some examples of proto encodings:

keyspace:"lookup" shard:"O" filter:<rules:<match:"uproduct" filter:"select * from product"
> >

Meaning: copy and replicate all columns and rows of product from the source table lookup/0.product to the uproduct table
in target keyspace.

keyspace:"user" shard:"-80" filter:<rules:<match:"morder" filter:"select * from uorder
where in_keyrange (mname, \\'unicode_loose_md5\\', \\'-80\\'")" > >

The double-backslash for the strings inside the select will first be escaped by the python script, which will cause the expression to
internally be \'unicode_loose_md5\'. Since the entire source is surrounded by single quotes when being sent as a value inside
the outer insert statement, the single \ will escape the single quotes that follow. The final value in the source will therefore be:

keyspace:"user" shard:"-80" filter:<rules:<match:"morder" filter:"select * from uorder
where in_keyrange (mname, 'unicode_loose_md5', '-80')" > >

Meaning: copy and replicate all columns of the source table user/-80.uorder where unicode_loose_md5 (mname) is within -80
keyrange, to the morder table in the the target keyspace.

This particular stream generally wouldn’t make sense in isolation. This would typically be one of a set of four streams that
combine to create a materialized view of uorder from the user keyspace into the target (merchant) keyspace, but sharded by
using mname as the primary vindex. The vindex used would be unicode_loose_md5 which should also match the primary vindex
of other tables in the target keyspace.

keyspace:"user" shard:"-80" filter:<rules:<match:"sales" filter:"select pid, count(*) as
kount, sum(price) as amount from uorder group by pid" > >

Meaning: create a materialized view of user/-80.uorder into sales of the target keyspace using the expression: select pid,

count (*¥)as kount, sum(price)as amount from uorder group by pid.

This represents only one stream from source shard -80. Presumably, there will be one more for the other -80 shard.

The ‘SELECT’ features The SELECT statement has the following features (and restrictions):

e The SELECT expressions can be any deterministic MySQL expression. Subqueries and joins are not supported. Among
aggregate expressions, only count (*) and sum(col) are supported.
e The where clause can only contain the in_keyrange construct. It has two forms:

— in_keyrange('-80'): The row’s source keyrange matched against -80.
— in_keyrange(col, 'vindex_func', '-80'): The keyrange is computed using the specified Vindex function as
vindex_func(col) and matched against -80.

e GROUP BY: can be specified if using aggregations. The GROUP BY expressions are expected to cover the non-aggregated
columns just like regular SQL requires.
e No other constructs like ORDER BY, LIMIT, etc. are allowed.

215

The pos field For starting a brand new vreplication stream, the pos field must be empty. The empty string signifies that
there’s no starting point for the vreplication. This causes VReplication to copy the contents of the source table first, and then
start the replication.

For large tables, this is done in chunks. After each chunk is copied, replication is resumed until it’s caught up. VReplication
ensures that only changes that affect existing rows are applied. Following this another chunk is copied, and so on, until all tables
are completed. After that, replication runs indefinitely until the VReplication stream is stopped or deleted.

It is a shared row The vreplication table row is shared between the operator and Vreplication itself. Once the row is
created, the VReplication stream updates various fields of the row to save and report on its own status. For example, the pos
field is continuously updated as it makes forward progress.

While copying, the state field will be Init or Copying.

Updating a stream You can change any field of the stream by issuing a VReplicationExec with an SQL UPDATE statement.
You are required to specify the id of the row you intend to update. You can only update one row at a time.

Typically, you can update the row and change the state to Stopped to stop a stream, or to Running to restart a stopped stream.

You can also update the row to set a stop_pos, which will make the replication stop once it reaches the specified position.

Deleting a stream You can delete a stream by issuing a DELETE statement. This will stop the replication and delete the row.
This statement is destructive. All data about the replication state will be permanently deleted. Note that the target table will
be left as-is, potentially partially copied, and needs to be cleaned up separately, if desired.

Other properties of VReplication

Fast replay VReplication has the capability to batch transactions if the send rate of the source exceeds the replay rate of the
destination. This allows it to catch up very quickly when there is a backlog. Load tests have shown a 3-20X improvement over
traditional MySQL replication depending on the workload.

Accurate lag tracking The source vttablet sends its current time along with every event. This allows the target to correct
for clock skew while estimating replication lag. Additionally, the source starts sending heartbeats if there is nothing to send. If
the target receives no events from the source at all, it knows that it’s definitely lagged and starts reporting itself accordingly.

Self-replication VReplication allows you to set the source keyspace/shard to be the same as the target. This is especially
useful for performing schema rollouts: you can create the target table with the intended schema and vreplicate from the source
table to the new target. Once caught up, you can cutover to write to the target table. In this situation, an apply on the target
generates a binlog event that will be picked up by the source and sent to the target. Typically, it will be an empty transaction.
In such cases, the target does not generally apply these transactions, because such an application will generate yet another
event. However, there are situations where one needs to apply empty transactions, especially if it’s a required stopping point.
VReplication can differentiate between these situations and apply events only as needed.

Deadlocks and lock wait timeouts It is possible that multiple streams can conflict with each other and cause deadlocks
or lock waits. When such things happen, VReplication silently retries such transactions without reporting an error. It does
increment a counter so that the frequency of such occurrences can be tracked.

Automatic retries If any other error is encountered, the replication is retried after a short wait. Each time, the stream
searches from the full list of available sources and picks one at random.

216

on__ddl The source specification allows you to specify a value for on_ddl. This allows you to specify what to do with DDL
SQL statements when they are encountered in the replication stream from the source. The values can be as follows:

o IGNORE: Ignore all DDLs (this is also the default, if a value for on_ddl is not provided).

e STOP: Stop when DDL is encountered. This allows you to make any necessary changes to the target. Once changes are
made, updating the state to Running will cause VReplication to continue from just after the point where it encountered
the DDL.

e EXEC: Apply the DDL, but stop if an error is encountered while applying it.

e EXEC_IGNORE: Apply the DDL, but ignore any errors and continue replicating.

Failover continuation If a failover is performed on the target keyspace/shard, the new master will automatically resume
VReplication from where the previous master left off.

Monitoring and troubleshooting

VTTablet /debug/status The first place to look at is the /debug/status page of the target master vttablet. The bottom
of the page shows the status of all the VReplication streams.

Typically, if there is a problem, the Last Message column will display the error. Sometimes, it’s possible that the stream cannot
find a source. If so, the Source Tablet would be empty.

VTTablet logfile If the errors are not clear or if they keep disappearing, the VT Tablet logfile will contain information about
what it’s been doing with each stream.

VReplicationExec select The current status of the streams can also be fetched by issuing a VReplicationExec command
with select * from _vt.vreplication.

Monitoring variables VReplication also reports the following variables that can be scraped by monitoring tools like
prometheus:

e VReplicationStreamCount: Number of VReplication streams.

e VReplicationSecondsBehindMasterMax: Max vreplication seconds behind master.

e VReplicationSecondsBehindMaster: vreplication seconds behind master per stream.
e VReplicationSource: The source for each VReplication stream.

o VReplicationSourceTablet: The source tablet for each VReplication stream.

Thresholds and alerts can be set to draw attention to potential problems.

VReplicationExec

description: Low level command to run a query on vreplication related tables

VReplicationExec [-json] <tablet alias> <sql command>

Description The VReplicationExec command is used to view or manage vreplication streams. More details are here. You
would typically use one of the higher-level commands like the WorkFlow command accomplish the same task.

Parameters

217

-json optional

The output of the command is json formatted: to be readable by scripts.

tablet alias mandatory

Id of the target tablet on which to run the sql query, specified using the vitess tablet id format cell-uid (see example below).

sql query mandatory

SQL query which will be run: validations are done to ensure that queries can be run only against vreplication tables. A limited
set of queries are allowed.

vtctlclient VReplicationExec 'zonel-100' 'select * from _vt.vreplication'

Workflow

description: Wrapper on VExec to perform common actions on a workflow

Workflow [-dry_run] <keyspacel[.workflow]> <action>

Description Workflow is a convenience command for useful actions on a workflow that you can use instead of actually specifying
a query to VExec.

Parameters

-dry-run optional
default false

You can do a dry run where no actual action is taken but the command logs all the actions that would be taken by SwitchReads.

keyspace.workflow mandatory

Name of target keyspace and the associated workflow to SwitchWrites for.

action mandatory

action is one of

e stop: sets the state of the workflow to Stopped: no further vreplication will happen until workflow is restarted

e start: restarts a Stopped workflows

e delete: removes the entries for this workflow in _ vt.vreplication

e show: returns a JSON object with details about the associated shards and also with all the columns from the
_ vt.vreplication table

o listall: returns a comma separated list of all running workflows in a keyspace

218

vtctlclient Workflow keyspacel.workflowl stop
vtctlclient Workflow keyspacel.workflowl show
vtctlclient Workflow keyspacel listall

Resources

description: Additional resources including Presentations and Roadmap

Presentations and Videos

CNCF Webinar 2020

Lizz van Dijk demonstrates how to migrate from a regular MySQL release to Vitess.

{{< youtube id=“W8VbiX039Ik” autoplay=*“false” >}}

MySQL Pre-FOSDEM Day 2020

Lizz van Dijk presents an introduction to Vitess for MySQL users.

KubeCon San Diego 2019

KubeCon featured several Vitess talks, including:

e Scaling Resilient Systems: A Journey into Slack’s Database Service - Rafael Chacon & Guido Iaquinti, Slack
e How to Migrate a MySQL Database to Vitess - Sugu Sougoumarane & Morgan Tocker, PlanetScale

o Building a Database as a Service on Kubernetes - Abhi Vaidyanatha & Lucy Burns, PlanetScale

o Vitess: Stateless Storage in the Cloud - Sugu Sougoumarane, PlanetScale

e Geo-partitioning with Vitess - Deepthi Sigireddi & Jitendra Vaidya, PlanetScale

e Gone in 60 Minutes: Migrating 20 TB from AKS to GKE in an Hour with Vitess - Derek Perkins, Nozzle

Vitess was also featured during the CNCF project updates keynote!

Highload 2019

Sugu Sougoumarane presents an overview of Vitess at Highload in Moscow.

{{< pdf src=*/ViewerJS/+#../files/2019-sugu-highload.pdf” >}}

219

https://kccncna19.sched.com/event/UaWu/scaling-resilient-systems-a-journey-into-slacks-database-service-rafael-chacon-guido-iaquinti-slack
https://kccncna19.sched.com/event/UaiN/how-to-migrate-a-mysql-database-to-vitess-sugu-sougoumarane-morgan-tocker-planetscale
https://kccncna19.sched.com/event/Uabw/building-a-database-as-a-service-on-kubernetes-abhi-vaidyanatha-lucy-burns-planetscale
https://kccncna19.sched.com/event/UaeD/vitess-stateless-storage-in-the-cloud-sugu-sougoumarane-planetscale
https://kccncna19.sched.com/event/UagI/geo-partitioning-with-vitess-deepthi-sigireddi-jitendra-vaidya-planetscale
https://kccncna19.sched.com/event/UaYn/gone-in-60-minutes-migrating-20-tb-from-aks-to-gke-in-an-hour-with-vitess-derek-perkins-nozzle
https://www.youtube.com/watch?v=two3TzF9mVY&feature=youtu.be&t=105

Utah Kubernetes Meetup 2019

Jiten Vaidya shows how you can extend Vitess to create jurisdiction-aware database clusters.

{{< pdf src=*/ViewerJS/#../files/2019-jiten-utah.pdf” >}}

CNCF Meetup Paris 2019

Sugu Sougoumarane and Morgan Tocker present a three hour Vitess workshop on Kubernetes.

{{< pdf src=*/ViewerJS/#../files/2019-paris-cncf.pdf” >}}

Percona Live Europe 2019

My First 90 Days with Vitess

Morgan Tocker talks about his adventures in Vitess, after having come from a MySQL background.
{{< pdf src=*/ViewerJS/#../files/2019-morgan-percona-eu.pdf” >}}

Sharded MySQL on Kubernetes

Sugu Sougoumarane presents an overview of running sharded MySQL on Kubernetes.

{{< pdf src=*/ViewerJS/#../files/2019-sugu-percona-eu.pdf” >}}

Vitess Meetup 2019 @ Slack HQ

Vitess: New and Coming Soon!

Deepthi Sigireddi shares new features recently introduced in Vitess, and what’s on the roadmap moving forward.
{{< pdf src=*/ViewerJS/+#../files/2019-deepthi-vitess-meetup.pdf” >1}}
Deploying multi-cell Vitess

Rafael Chacon Vivas describes how Vitess is used in Slack.

{{< pdf src=*/ViewerJS/#../files/2019-rafael-vitess-meetup.pdf” >}}
Vitess at Pinterest

David Weitzman provides an overview of how Vitess is used at Pinterest.
{{< youtube id=“1cWWlaglia8” autoplay=*“false” >}}

No more Regrets

Sugu Sougoumarane demonstrates new features coming to VReplication.

{{< youtube id=“B1Nrtptjtcs” autoplay=*“false” >}}

Cloud Native Show 2019

Vitess at scale - how Nozzle.io runs MySQL on Kubernetes
Derek Perkins joins the Cloud Native show and explains how Nozzle uses Vitess.

Listen to Podcast

220

https://anchor.fm/cloud-native-show/episodes/Vitess-at-scale---how-Nozzle-io-runs-MySQL-on-Kubernetes-e4m5lo

CNCF Webinar 2019

Vitess: Sharded MySQL on Kubernetes
Sugu Sougoumarane provides an overview of Vitess for Kubernetes users.

{{< youtube id=“E6H4bgJ3Z6c” autoplay="false” >}}

Kubecon China 2019

How JD.Com runs the World’s Largest Vitess
Xuhaihua and Jin Ke Xie present on their experience operating the largest known Vitess cluster, two years in.

{{< youtube id=“qww4UVNG3Ilo” autoplay="*“false” >}}

RootConf 2019

OLTP or OLAP: why not both?
Jiten Vaidya from PlanetScale explains how you can use both OLTP and OLAP on Vitess.
{{< youtube id=“bhzJJF82mFc” autoplay==“false” >}}

Kubecon 19 Barcelona

Vitess Deep Dive
Jiten Vaidya and Dan Kozlowski from PlanetScale deep dive on Vitess.

{{< youtube id=“0Z14HrB9p-8” autoplay=*“false” >}}

Percona Live Austin 2019

Vitess: Running Sharded MySQL on Kubernetes

Sugu Sougoumarane shows how you can run sharded MySQL on Kubernetes.

{{< youtube id=“v7oxiVmGXp4” autoplay=*“false” >1}}

MySQL, Kubernetes, Business & Enterprise

David Cohen (Intel), Steve Shaw (Intel) and Jiten Vaidya (PlanetScale) discuss Open Source cloud native databases.
View Talk Abstract and Slides

221

https://www.percona.com/live/19/sessions/an-open-source-cloud-native-database-cndb

Velocity New York 2018

Smooth scaling: Slack’s journey toward a new database

Slack has experienced tremendous growth for a young company, serving over nine million weekly active customers. But with
great growth comes greater growth pains. Slack’s rapid growth over the last few years outpaced the scaling capacity of its original
sharded MySQL database, which negatively impacted the company’s customers and engineers.

Ameet Kotian explains how a small team of engineers embarked on a journey for the right database solution, which eventually
led them to Vitess, a powerful open source database cluster solution for MySQL. Vitess combines the features of MySQL with
the scalability of a NoSQL database. It has been serving Youtube’s traffic for numerous years and has a strong community.

Although Vitess meets a lot of Slack’s needs, it’s not an out-of-the-box solution. Ameet shares how the journey to Vitess was
planned and executed, with little customer impact, in the face of piling operational challenges, such as AWS issues, MySQL
replication, automatic failovers, deployments strategies, and so forth. Ameet also covers Vitess’s architecture, trade-offs, and
what the future of Vitess looks like at Slack.

Ameet Kotkian, senior storage operations engineer at Slack, shows us how Slack uses Vitess.

Percona Live Europe 2017

Migrating to Vitess at (Slack) Scale

Slack is embarking on a major migration of the MySQL infrastructure at the core of our service to use Vitess’ flexible sharding
and management instead of our simple application-based shard routing and manual administration. This effort is driven by the
need for an architecture that scales to meet the growing demands of our largest customers and features under the pressure to
maintain a stable and performant service that executes billions of MySQL transactions per hour. This talk will present the
driving motivations behind the change, why Vitess won out as the best option, and how we went about laying the groundwork
for the switch. Finally, we will discuss some challenges and surprises (both good and bad) found during our initial migration
efforts, and suggest some ways in which the Vitess ecosystem can improve that will aid future migration efforts.

Michael Demmer shows us how, at Percona Live Europe 2017.

{{< pdf src=*/ViewerJS/#../files/2017-demmer-percona.pdf” >}}

Vitess Deep Dive sessions

Start with session 1 and work your way through the playlist. This series focuses on the V3 engine of VT Gate.
{{< youtube id=“6yOjF7qhmyY” autoplay="*“false” >}}

Percona Live 2016

Sugu and Anthony showed what it looks like to use Vitess now that Keyspace IDs can be completely hidden from the application.
They gave a live demo of resharding the Guestbook sample app, which now knows nothing about shards, and explained how
new features in VT'Gate make all of this possible.

{{< pdf src=*/ViewerJS/+#../files/percona-2016.pdf” >1}}

222

https://www.percona.com/live/e17/sessions/migrating-to-vitess-at-slack-scale
https://github.com/sougou
https://github.com/enisoc

CoreOS Meetup, January 2016

Vitess team member Anthony Yeh’s talk at the January 2016 CoreOS Meetup discussed challenges and techniques for run-
ning distributed databases within Kubernetes, followed by a deep dive into the design trade-offs of the Vitess on Kubernetes
deployment templates.

{{< pdf src=*/ViewerJS/#../files/coreos-meetup-2016-01-27.pdf” >}}

Oracle OpenWorld 2015

Vitess team member Anthony Yeh’s talk at Oracle OpenWorld 2015 focused on what the Cloud Native Computing paradigm
means when applied to MySQL in the cloud. The talk also included a deep dive into transparent, live resharding, one of the key
features of Vitess that makes it well-adapted for a Cloud Native environment.

{{< pdf src=*/ViewerJS/#../files/openworld-2015-vitess.pdf” >}}

Percona Live 2015
Vitess team member Anthony Yeh’s talk at Percona Live 2015 provided an overview of Vitess as well as an explanation of how

Vitess has evolved to live in a containerized world with Kubernetes and Docker.

{{< pdf src=*/ViewerJS/#../files/percona-2015-vitess-and-kubernetes.pdf” >}}

Google I/0O 2014 - Scaling with Go: YouTube’s Vitess
In this talk, Sugu Sougoumarane from the Vitess team talks about how Vitess solved YouTube’s scalability problems as well as

about tips and techniques used to scale with Go.

{{< youtube id=“midJ6b1LkA0” autoplay="“false” >}}

Vitess Roadmap

description: Upcoming features planned for development

As an open source project, Vitess is developed by a community of contributors. Many of the contributors run Vitess in
production, and add features to address their specific pain points. As a result of this, we can not guarantee features listed here
will be implemented in any specific order.

{{< info >}} If you have a specific question about the Roadmap, we recommend posting in our Slack channel, click the Slack
icon in the top right to join. This is a very active community forum and a great place to interact with other users. {{< /info

>}}

Short Term

e Improve Documentation
o Improve Usability
e Support more MySQL Syntax (improve compatibility as a drop-in replacement)

223

https://github.com/enisoc
http://www.meetup.com/coreos/events/228233948/
https://github.com/vitessio/vitess/tree/master/examples/kubernetes
https://github.com/enisoc
http://cncf.io
https://github.com/enisoc
https://github.com/sougou
https://vitess.slack.com

— Certify popular frameworks like Ruby on Rails, Hibernate etc.

e Vitess-native unplanned failovers

e Pluggable durability policies

o Nightly benchmarking (regression testing)
e Schema changes through vitess

— gh-ost and pt-osc integration

e VReplication

— VExec tool for management

Medium Term

e Vttablet to manage more than one MySQL schema

e Rewrite of vtctld Ul including visualization of VReplication

o VReplication throttling

e Binlog server

o Topology Service: Reduce dependencies on the topology service. i.e. Vitess should be operable normally even if topology
service is down for several hours. Topology service should be used only for passive discovery.

e Support for PostgreSQL: Vitess should be able to support PostgreSQL for both storing data, and speaking the protocol in
VTGate.

Troubleshoot

description: Debug common issues with Vitess

If there is a problem in the system, one or many alerts would typically fire. If a problem was found through means other than
an alert, then the alert system needs to be iterated upon.

When an alert fires, you have the following sources of information to perform your investigation:

o Alert values

e Graphs

o Diagnostic URLs
e Log files

Below are a few possible scenarios.

Elevated query latency on master

Diagnosis 1: Inspect the graphs to see if QPS has gone up. If yes, drill down on the more detailed QPS graphs to see which
table, or user caused the increase. If a table is identified, look at /debug/queryz for queries on that table.

Action: Inform engineer about about toxic query. If it’s a specific user, you can stop their job or throttle them to keep the load
manageable. As a last resort, blacklist query to allow the rest of the system to stay healthy.

224

Diagnosis 2: QPS did not go up, only latency did. Inspect the per-table latency graphs. If it’s a specific table, then it’s most
likely a long-running low QPS query that’s skewing the numbers. Identify the culprit query and take necessary steps to get it
optimized. Such queries usually do not cause outage. So, there may not be a need to take extreme measures.

Diagnosis 3: Latency seems to be up across the board. Inspect transaction latency. If this has gone up, then something is causing
MySQL to run too many concurrent transactions which causes slow-down. See if there are any tx pool full errors. If there is
an increase, the INFO logs will dump info about all transactions. From there, you should be able to if a specific sequence of
statements is causing the problem. Once that is identified, find out the root cause. It could be network issues, or it could be a
recent change in app behavior.

Diagnosis 4: No particular transaction seems to be the culprit. Nothing seems to have changed in any of the requests. Look at
system variables to see if there are hardware faults. Is the disk latency too high? Are there memory parity errors? If so, you
may have to failover to a new machine.

Master starts up read-only

To prevent accidentally accepting writes, our default my.cnf settings tell MySQL to always start up read-only. If the master
MySQL gets restarted, it will thus come back read-only until you intervene to confirm that it should accept writes. You can use
the SetReadWrite command to do that.

However, usually if something unexpected happens to the master, it’s better to reparent to a different replica with
EmergencyReparentShard. If you need to do planned maintenance on the master, it’s best to first reparent to another replica
with PlannedReparentShard.

Vitess sees the wrong tablet as master
If you do a failover manually (not through Vitess), you’ll need to tell Vitess which tablet corresponds to the new master MySQL.

Until then, writes will fail since they’ll be routed to a read-only replica (the old master). Use the TabletExternallyReparented
command to tell Vitess the new master tablet for a shard.

Tools like Orchestrator can be configured to call this automatically when a failover occurs. See our sample orchestrator.conf.json
for an example of this.

User Guides

description: Task-based guides for common usage scenarios

We recommend running through a get started on your favorite platform before running through user guides.

Advanced Configuration

description: User guides covering advanced configuration concepts

225

https://github.com/github/orchestrator
https://github.com/vitessio/vitess/blob/1129d69282bb738c94b8af661b984b6377a759f7/docker/orchestrator/orchestrator.conf.json#L131

Authorization

A common question is how to enforce fine-grained access control in Vitess. This question comes up because Vitess uses connection
pooling with fixed MySQL users at the VT Tablet level, and implements its own authentication at the VT Gate level. As a result,
you cannot use the normal MySQL GRANTS system to give certain application-level MySQL users more or less permissions than
others.

The MySQL GRANT system is very extensive, and we have not reimplemented all of this functionality in Vitess. What we have
done is to enable you to provide authorization via table-level ACLs, with a few basic characteristics:

o Individual users can be assigned 3 levels of permissions:

— Read (corresponding to read DML, e.g. SELECT)
— Write (corresponding to write DML, e.g. INSERT, UPDATE, DELETE)
— Admin (corresponding to DDL, e.g. ALTER TABLE)

e Permissions are applied on a specified set of tables, which can be enumerated or specified by regex.

VTTablet parameters for table ACLs

Note that the Vitess authorization via ACLs are applied at the VT Tablet level, as opposed to on VT Gate, where authentication
is enforced. There are a number of VT Tablet command line parameters that control the behavior of ACLs. Let’s review these:

o -enforce-tableacl-config: Set this to true to ensure VTTablet will not start unless there is a valid ACL configuration.
This is used to catch misconfigurations resulting in blanket access to authenticated users.

e —queryserver-config-enable-table-acl-dry-run: Set to true to check the table ACL at runtime, and only emit the
TableACLPseudoDenied metric if a request would have been blocked. The request is then allowed to pass, even if the ACL
determined it should be blocked. This can be used for testing new or updated ACL policies. Default is false.

e —queryserver-config-strict-table-acl: Set to true to enforce table ACL checking. This needs to be enabled for
your ACLs to have any effect. Any users that are not specified in an ACL policy will be denied. Default is false.

e —queryserver-config-acl-exempt-acl: Allows you to specify the name of an ACL (see below for format) that is exempt
from enforcement. Allows you to separate the rollout and the subsequent enforcement of a specific ACL.

e —table-acl-config: Path to a file defining the table ACL config.

o -table-acl-config-reload-interval: How often the table-acl-config should be reloaded. Set this to allow you to
update the ACL file on disk, and then have VTTablet automatically reload the file within this period. Default is not to
reload the ACL file after VT Tablet startup. Note that even if you do not set this parameter, you can always force VT Tablet
to reload the ACL config file from disk by sending a SIGHUP signal to your VT Tablet process.

Format of the table ACL config file

The file specified in the —~table-acl-config parameter above is a JSON file with the following example to explain the format:

{
"table_groups": [

{
"name": "aclname",
"table_names_or_prefixes": [
Il‘yll
(]
1,

226

"readers": [
"vtgate-userl"

1
"writers": [
"vtgate-user2"
T
"admins": [
"vtgate-user3d"
]
e
{n" more ACLs here if necessary ..." }
]
}
Notes:

o name: This is the name of the ACL (aclname in the example above) and is what needs to be specified in
-queryserver-config-acl-exempt-acl, if you need to exempt a specific ACL from enforcement.

o table_names_or_prefixes: A list of strings and/or regexes that allow a rule to target a specific table or set of tables.
Use % as in the example to specify all tables. Note that only the SQL % “regex” wildcard is supported here at the moment.

e readers: A list of VT'Gate users, specified by their UserData field in the authentication specification, that are allowed to
read the tables targeted by this ACL rule. Typically allows SELECT.

e writers: A list of VT'Gate users that are allowed to write to the tables targeted by this ACL rule. Typically allows
INSERT, UPDATE and DELETE.

e admins: A list of VT Gate users that are allowed admin privileges on the tables targeted by this ACL rule. Typically allows
DDL privileges, e.g. ALTER TABLE. Note that this also includes some commands that might be thought of as DML, which
are really DDL, like TRUNCATE)

e Note that writers privilege does not imply readers privilege, and admins privilege does not imply readers or writers.
You need to therefore add your users to each list explicitly if you want them to have that level of access.

e You cannot use multiple ACL rules to target the same (sub)set of tables. Therefore the tablenames specified by
table_names_or_prefixes (or expanded by regexes) need to be non-overlapping between ACL rules. Additionally, you
cannot have duplicate tablenames or overlapping regexes in the table_names_or_prefixes list in a single ACL rule.

Example

Let’s assume your Vitess cluster already has two keyspaces setup:

e keyspacel with a single table t that should only be accessed by myuser1
o keyspace2 with a single table t that should only be accessed by myuser?2

For the VT Tablet configuration for keyspacel:

$ cat > acls_for_keyspacel.json << EOF

{
"table_groups": [
{

"name": "keyspacelacls",
"table_names_or_prefixes": ["}"],
"readers": ["myuserl", "vitess"],
"writers": ["myuserl", "vitess"],
"admins": ["myuserl", "vitess"]

227

]
b
EQF

$ vttablet -init_keyspace "keyspacel" -table-acl-config=acls_for_keyspacel. json
-enforce-tableacl-config -queryserver-config-strict-table-acl

Note that the % specifier for table_names_or_prefixes translates to “all tables”.

Do the same thing for keyspace?2:

$ cat > acls_for_keyspace2.json << EOF

{
"table_groups": [
{
"name": "keyspace2acls",
"table_names_or_prefixes": ["}"],
"readers": ["myuser2", "vitess"],
"writers": ["myuser2", "vitess"],
"admins": ["myuser2", "vitess"]
}
]
}
EQF

$ vttablet -init_keyspace "keyspace2" -table-acl-config=acls_for_keyspace2.json
-enforce-tableacl-config -queryserver-config-strict-table-acl

With this setup, the myuser1 and myuser?2 users can only access their respective keyspaces, but the vitess user can access both.

Attempt to access keyspacel with myuser2 credentials through vtgate

$ mysql -h 127.0.0.1 -u myuser2 -ppassword2 -D keyspacel -e "select * from t"

ERROR 1045 (HY000) at line 1: vtgate: http://vtgate-zonel-7fbfd8cc47-tchbz:15001/: target:
keyspacel.-80.master, used tablet: zonel-476565201

(zonel-keyspacel-x-80-replica-1.vttablet): vttablet: rpc error: code = PermissionDenied
desc = table acl error: "myuser2" [] cannot run PASS_SELECT on table "t" (CallerID:
myuser2)

target: keyspacel.80-.master, used tablet: zonel-1289569200
(zonel-keyspacel-80-x-replica-0.vttablet): vttablet: rpc error: code = PermissionDenied
desc = table acl error: "myuser2" [] cannot run PASS_SELECT on table "t" (CallerID:
myuser2)

$

Whereas myuserl is able to access its keyspace without error:

$ mysql -h 127.0.0.1 -u myuserl -ppasswordl -D keyspacel -e "select * from t"
$

CreateLookupVindex

{{< info >}} This guide follows on from the Get Started guides. Please make sure that you have an Operator, local or Helm
installation ready. Make sure you are at the point where you have the sharded keyspace called customer setup. {{< /info >}}

CreateLookupVindex is a new VReplication workflow in Vitess 6. It is used to create and backfill a lookup Vindex automat-
ically for a table that already exists, and may have a significant amount of data in it already.

228

Internally, the CreateLookupVindex process uses VReplication for the backfill process, until the lookup Vindex is “in sync”.
Then the normal process for adding/deleting/updating rows in the lookup Vindex via the usual transactional flow when updating
the “owner” table for the Vindex takes over.

In this guide, we will walk through the process of using the CreateLookupVindex workflow, and give some insight into what
happens underneath the covers.

vtctlclient CreateLookupVindex has the following syntax:

CreateLookupVindex [-cell=<cell>] [-tablet_types=<source_tablet_types>] <keyspace> <json_spec>

e <json_spec>: Use the lookup Vindex specified in <json_spec> along with VReplication to populate/backfill the lookup
Vindex from the source table.

o <keyspace>: The Vitess keyspace we are creating the lookup Vindex in. The source table is expected to also be in this
keyspace.

o -tablet-types: Provided to specify the shard tablet types (e.g. MASTER, REPLICA, RDONLY) that are acceptable as source
tablets for the VReplication stream(s) that this command will create. If not specified, the tablet type used will default to
the value of the vttablet -vreplication_tablet_type option, which defaults to REPLICA.

e -cell: By default VReplication streams, such as used by CreateLookupVindex will not cross cell boundaries. If you want
the VReplication streams to source their data from tablets in a cell other than the local cell, you can use the -cell option
to specify this.

The <json_spec> describes the lookup Vindex to be created, and details about the table it is to be created against (on which
column, etc.). However, you do not have to specify details about the actual lookup table, Vitess will create that automatically
based on the type of the column you are creating the Vindex column on, etc.

In the context of the regular customer database that is part of the Vitess examples we started earlier, let’s add some rows into
the customer.corder table, and then look at an example <json_spec>:

$ mysql -P 15306 -h 127.0.0.1 -u root --binary-as-hez=false -4
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> use customer;
Database changed

mysql> show tables;

e +
| Tables_in_vt_customer |
e +
| corder

| customer
e e +

2 rows in set (0.00 sec)

mysql> desc corder;

domm e Fmmmmm e t————— D Fmm—————— Fm————— +
| Field | Type | Null | Key | Default | Extra |
fommmmm - Fmmmmm - +—————= +-———= dmmm—————— to————— +
| order_id | bigint | NO | PRI | NULL |

| customer_id | bigint | YES | | NULL | |
| sku | varbinary(128) | YES | | NULL |

| price | bigint | YES | | NULL | |
dommmmm - Fmmmmm - +—————= +-———= domm————— to———— +

4 rows in set (0.01 sec)

229

mysql> insert into corder (order_id, customer_id, sku, price) values (1, 1, "Product_1",
100) ;
Query 0K, 1 row affected (0.01 sec)

mysql> insert into corder (order_id, customer_id, sku, price) values (2, 1, "Product_2",
101) ;
Query 0K, 1 row affected (0.01 sec)

mysql> insert into corder (order_id, customer_id, sku, price) values (3, 2, "Product_3",
102) ;
Query 0K, 1 row affected (0.01 sec)

mysql> insert into corder (order_id, customer_id, sku, price) values (4, 3, "Product_4"
103) ;
Query 0K, 1 row affected (0.01 sec)

mysql> insert into corder (order_id, customer_id, sku, price) values (5, 4, "Product_5",
104) ;
Query 0K, 1 row affected (0.03 sec)

mysql> select * from corder;

R e e frm—me——e +
| order_id | customer_id | sku | price |
H————— e e frommm——mm—ee frommm——e +
I 1 | 1 | Product_ 1 | 100 |
2	1	Product_2	101
3	2	Product_3	102
4	3	Product_4	103
5	4	Product_5	104
h—————————e frmme———c———e—= frmmm————e——e fro—————e +

5 rows in set (0.01 sec)

If we look at the VSchema for the customer.corder table, we will see there is a hash index on the customer_id table, and 4
of our 5 rows have ended up on the -80 shard, and the 5th row on the 80- shard:
mysql> use customer/-80

Database changed

mysql> select * from corder;

tommmm - Fommmmmmm dommmmmm— o tom——— +
| order_id | customer_id | sku | price |
tommm - Fommmmm - Fommmm—————— e +
1	1	Product_1	100
2	1	Product_2	101
3	2	Product_3	102
4	3	Product_4	103
e ittt Fommmmmmm Fommmmm—— o e +
4 rows in set (0.00 sec)

mysql> use customer/80-

Database changed

mysql> select * from corder;

e it Fommmm - e bttt e +
| order_id | customer_id | sku | price |
e ittt Fommmmmmm - pommmmmm— e i +
| 5 | 4 | Product_5 | 104 |

230

T — e — e e — +
1 row in set (0.01 sec)

Note that this skewed distribution is completely coincidental, for larger numbers of rows, we would expect the distribution to be
approximately even for a hash index.

Now let’s say we want to add a lookup Vindex on the sku column. We can use a consistent_lookup or consistent_lookup_unique
Vindex type. In our example we will use consistent_lookup_unique.

Here is our example <json_spec>:

$ cat lookup_vindex. json

{
"sharded": true,
"vindexes": {
"corder_lookup": {
"type": "consistent_lookup_unique",
"params": {
"table": "customer.corder_lookup",
"from": "sku",
"to": "keyspace_id"
I,
"owner": "corder"
}
s
"tables": {
"corder": {
"column_vindexes": [
{
"column": "sku",
"name": "corder_lookup"
}
]
}
¥
}

Note that as mentioned above, we do not have to tell Vitess about how to shard the actual backing table for the lookup Vindex
or any schema to create as it will do it automatically. Now, let us actually execute the CreateLookupVindex command:

$ vtctlclient -server localhost:15999 CreatelLookupVindex -tablet_types=RDONLY customer
"$(cat lookup_vindex.json)"

Note:

o We are specifying a tablet_ type of RDONLY; meaning it is going to run the VReplication streams from tablets of the RDONLY
type only. If tablets of this type cannot be found, in a shard, the lookup Vindex population will fail.

Now, in our case, the table is tiny, so the copy will be instant, but in a real-world case this might take hours. To monitor
the process, we can use the usual VReplication commands. However, the VReplication status commands needs to operate on
individual tablets. Let’s check which tablets we have in our environment, so we know which tablets to issue commands against:

$ vtctlclient -server localhost:15999 ListAllTablets | grep customer

zonel-0000000300 customer -80 master localhost:15300 localhost:17300 [] 2020-08-13T01:23:15Z
zonel -0000000301 customer -80 replica localhost:15301 localhost:17301 [] <null>
zonel-0000000302 customer -80 rdonly localhost:15302 localhost:17302 [] <null>
zonel-0000000400 customer 80- master localhost:15400 localhost:17400 [] 2020-08-13T01:23:15Z
zonel -0000000401 customer 80- replica localhost:15401 localhost:17401 [] <null>

zonel -0000000402 customer 80- rdonly localhost:15402 localhost:17402 [] <null>

231

i.e. now we can see what will happen:

the RDONLY source tablets zone1-0000000302 and zone1-0000000402

e VReplication streams will be setup from the master tablets zone1-0000000300 and zone1-0000000400; pulling data from

e Note that each master tablet will start streams from each source tablet, for a total of 4 streams in this case.

Lets observe the VReplication streams that got created using the vtctlclient VReplicationExec command. First let’s look
at the streams to the first master tablet zone1-0000000300:

$ vtctlclient -server localhost:15999 VReplicationExec zonel-0000000300 "select * from

_vt.vreplication"

max_replication_lag | cell
| message |

9223372036854775807 |
0 |

Fom e e ettt e e ittt Tt
| id | workflow | source
pos | stop_pos | max_tps
| tablet_types | time_updated | transaction_timestamp | state
db_name |
Fom e ittt it T e +
| 2 | corder_lookup_vdx | keyspace:"customer" shard:"-80" |
MySQL56/68dalcdd-dd03-11ea-95de-68a86d2718b0:1-43 |
9223372036854775807 | | RDONLY | 1597282811 |
Stopped | Stopped after copy. | vt_customer |

| | filter:<rules:<match:"corder_lookup"

| filter:"select sku as sku,

| keyspace_id() as keyspace_id from

| corder where in_keyrange (sku,

| 'customer.binary_md5',

| |
|
| group by sku,

'—80')
|

keyspace_id" > >

| stop_after_copy:true

3 | corder_lookup_vdx | keyspace:"customer"

shard:"80-"

MySQL56/7d2c819e-dd03-11ea-92e4-68a86d2718b0:1-38 |

9223372036854775807 | | RDONLY

Stopped | Stopped after copy. | vt_customer

| | filter:<rules:<match:"corder_lookup"

232

1597282811

9223372036854775807 |
0 |

| |
| filter:"select sku as sku, |
| | |
| | | | |
| |
| keyspace_id() as keyspace_id from |
| | |
| | | | |
| |
| corder where in_keyrange (sku, |
| | |
| | | | |
| |
| 'customer.binary_md5', '-80"') |
| | |
| | | | |
| |
| group by sku, keyspace_id" > > |
| | |
| | | | |
| |

| stop_after_copy:true |

And now the streams to the second master tablet zone1-0000000400:

$ vtctlclient -server localhost:15999 VReplicationExec zonel-0000000400 "select * from
_vt.vreplication"

e - e T
[id | workflow | source
pos | stop_pos | max_tps | max_replication_lag | cell
| tablet_types | time_updated | transaction_timestamp | state | message
db_name |
it ittt ettt ettt ittt ettt
| 2 | corder_lookup_vdx | keyspace:"customer" shard:"-80" |
MySQL56/68dalcdd-dd03-11ea-95de-68a86d2718b0:1-43 | | 9223372036854775807 |
9223372036854775807 | | RDONLY | 1597282811 | 0 |

Stopped | Stopped after copy. | vt_customer |
| | | filter:<rules:<match:"corder_lookup" |

| filter:"select sku as sku,

| keyspace_id() as keyspace_id from

| corder where in_keyrange (sku,

233

| |
| 'customer.binary_md5', '80-') |
| | |
| | | | |
| |
| group by sku, keyspace_id" > > |
| | |
| | | | |
| |
| stop_after_copy:true |

| 3 | corder_lookup_vdx | keyspace:"customer" shard:"80-" I
MySQL56/7d2c819e-dd03-11ea-92e4-68a86d2718b0:1-38 | | 9223372036854775807 |
9223372036854775807 | | RDONLY | 1597282811 | 0 |
Stopped | Stopped after copy. | vt_customer |

| | | filter:<rules:<match:"corder_lookup" |
| | |
| | | | I
| |
| filter:"select sku as sku, |
| | |
| | | | |
| |
| keyspace_id() as keyspace_id from |
| | |
| | | | |
| |
| corder where in_keyrange (sku, I
| | |
| | | | |
| |
| 'customer.binary_md5', '80-') |
| | |
| | | | I
| |
| group by sku, keyspace_id" > > |
| | |
| | | | |
| |
| stop_after_copy:true |

et St ettt - o m -

There is a lot going on in this output, but the most important parts are the state and message fields which say Stopped and
Stopped after copy. for all four the streams. This means that the VReplication streams finished their copying/backfill of the
lookup table.

Note that if the tables were large and the copy was still in progress, the state field would say Copying, and you can see the
state/progress of the copy by looking at the _vt.copy_state table, e.g.:

$ vtctlclient -server localhost:15999 VReplicationExec zonel-0000000300 "select * from
_vVt.copy_state"
o Fo—mm———————— to——————— +

| vrepl_id | table_name | lastpk |

234

(In this case this table is empty, because the copy has finished already).
We can verify the result of the backfill by looking at the customer keyspace again in the MySQL client:

mysql> show tables;

o +
| corder |
| corder_lookup

| customer |
e +

3 rows in set (0.01 sec)

Note there is now a new table, corder_lookup; which was created as the backing table for the lookup Vindex. Lets look at this
table:

mysql> desc corder_lookup;

fommmmm o i +o————= e Fommm— - to———— - +
| Field | Type | Null | Key | Default | Extra |
dommmmm Fmmmmm - e e Fmm———— pm———— +
| sku | varbinary(128) | NO | PRI | NULL |

| keyspace_id | varbinary(128) | YES | | NULL | |
fommmmm e Fmmmmm e e +-———= dommm— - e +
2 rows in set (0.01 sec)

mysql> select sku, hex(keyspace_id) from corder_lookup;

Fomm - Fmmmmm +
| sku | hex(keyspace_id) |
Fommmm - Fmmmmm +
Product_2	166B40B44ABA4BD6
Product_3	O6E7EA22CE92708F
Product_1	166B40B44ABA4BD6
Product_4	4EB190C9A2FA169C
Product_5	D2FD8867D50D2DFE
fommmmm - Fmmmmmmm +

Basically, this shows exactly what we expected. Now, we can clean up the VReplication streams. Note these commands will
clean up all VReplication streams on these tablets. You may want to filter by id if there are other streams running:

$ vtctlclient -server localhost:15999 VReplicationExec zonel-0000000300 "delete from
_vt.vreplication"

+

+

$ vtctlclient -server localhost:15999 VReplicationExec zonel-0000000400 "delete from
_vt.vreplication"

+

+

Next, to confirm the lookup Vindex is doing what we think it should, we can use the Vitess MySQL explain format, e.g.:

mysql> explain format=vitess select * from corder where customer_id = 1;
e Pem=mmm==sco===o==== Pem==mmm==== Pom=mmm==om=== Pom=cmm===o== e e L L — — — — -
| operator | variant | keyspace | destination | tabletType | query
|
[oo P s e s e eSS FEEEEE e e e e EE e e S e ————-

235

| Route | SelectEqualUnique | customer | | UNKNOWN | select * from corder

where customer_id = 1 |
domm— - Fmmmmmm e domm——————— dmmmmmm - dmmmmm - o
1 row in set (0.00 sec)

Since the above select statement is doing a lookup using the primary Vindex on the corder table, this query does not Scatter
(variant is SelectEqualUnique), as expected. Let’s try a scatter query to see what that looks like

mysql> explain format=vitess select * from corder;

tom - Fmmmmmmm - Fmmmm - Fmmmmmmm - Fommm - Fmmmmmm e +
| operator | variant | keyspace | destination | tabletType | query

e et e tmmmmm - Fmmmmmm - Fommmmmmm - Fmmmmmm e +
| Route | SelectScatter | customer | | UNKNOWN | select * from corder |
dom - Fmmmmm - bmmmm dmmmmm e Fmmmm - Fmm +

1 row in set (0.00 sec)

OK, variant is SelectScatter for a scatter query. Let’s try a lookup on a column that does not have a primary or secondary
(lookup) Vindex, e.g. the price column:

mysql> explain format=vitess select * from corder where price = 103;
tommmm - Fommmmm - Fommmm - Fommmmm - dmmmmmm—— - it ittt e
| operator | variant | keyspace | destination | tabletType | query
I

tommm - Fmmmmmm Fommmm - Fommmmm - Fmmmmmmm— - e ittt i
| Route | SelectScatter | customer | | UNKNOWN | select * from corder

where price = 103 |
tommmm - e Fommmm— - Fommmmmmm fmmmmmmmm— o et it e

1 row in set (0.00 sec)

That also scatters, as expected.
Now, let’s try a lookup on the sku column, which we have created our lookup Vindex on:

mysql> explain format=vitess select * from corder where sku = "Product_1";
| operator | variant | keyspace | destination | tabletType | query

dom— - e dmmm——————— Fmmmmm e Fmmmmm - e
| Route | SelectEqualUnique | customer | | UNKNOWN | select * from corder

where sku = 'Product_1' |
e Fmmmmmm e Fommm———— dommmmm - dmmmmmm - e e e
1 row in set (0.00 sec)

As expected, we can see it is not scattering anymore, which it would have before we did CreateLookupVindex.
Lastly, let’s ensure that the lookup Vindex is being updated appropriately when we insert and delete rows:

mysql> select * from corder;

Fmm Fmm Fmmm————— b ———— +
| order_id | customer_id | sku | price |
o Fmmmm - Fmmm———————— F—————— +
5	4	Product_5	104
1	1	Product_1	100
2	1	Product_2	101
3	2	Product_3	102
4	3	Product_4	103
o ——— Fmmm - Fom————— F—————— +
5 rows in set (0.00 sec)

mysql> delete from corder where customer_id = 1 and sku = "Product_1";

236

Query OK,

1 row affected (0.03

mysql> select * from corder;

+
|
|
|
|
|
|
|
|
|
|

+
|
|
|
|
|
|
|
|
|
|
|
|
|

+
|
|
|
|
|
|
|
|
|
|
|

4 rows in set

mysql> select

Product_4
Product_5
Product_2
Product_3

+
I
- +
I
I
I
I
+

e

4 rows in set

customer_id

Product_2

Product_4
Product_5

(0.01 sec)

sku, hex(keyspace_id) from

4EB190C9A2FA169C
D2FD8867D50D2DFE
166B40B44ABA4BD6
O6E7TEA22CE92708F

(0.01 sec)

I
+
|
| Product_3
|
I
+

corder_lookup;

We deleted a row from the corder table, and the matching lookup Vindex row is gone.

mysql> insert into corder (order_id,

Query OK,

105) ;

mysql> select * from corder;

| order_id |
dmm +-
I 2 |
I 3 |
I 4 |
I 6 |
I 5 |

5 rows in set

mysql> select

i

5

Product_4
Product_5
Product_6
Product_2
Product_3

+
I
+
I
I
I
I
|
+

rows in set

customer_id, sku, price) values (6,

1 row affected (0.02 sec)

Product_2
Product_3

Product_6
Product_5

(0.00 sec)

I
+
I
I
| Product_4
I
I
+

+ - — — — + — +
=
o
[

sku, hex(keyspace_id) from corder_lookup;

4EB190C9A2FA169C
D2FD8867D50D2DFE
166B40B44ABA4BD6
166B40B44ABA4BD6
O6ETEA22CE92708F

(0.00 sec)

We added a new row to the corder table, and now we have a new row in the lookup table.

237

1,

"Product_6",

Integration with Orchestrator
Orchestrator is a tool for managing MySQL replication topologies, including automated failover. It can detect master failure
and initiate a recovery in a matter of seconds.

For the most part, Vitess is agnostic to the actions of Orchestrator, which operates below Vitess at the MySQL level. That
means you can pretty much set up Orchestrator in the normal way, with just a few additions as described below.

For the Kubernetes example, we provide a sample script to launch Orchestrator for you with these settings applied.

Orchestrator configuration

Orchestrator needs to know some things from the Vitess side, like the tablet aliases and whether semisync is enforced with async
fallback disabled. We pass this information by telling Orchestrator to execute certain queries that return local metadata from a
non-replicated table, as seen in our sample orchestrator.conf.json:

"DetectClusterAliasQuery": "SELECT value FROM _vt.local_metadata WHERE name='ClusterAlias'",

"DetectInstanceAliasQuery": "SELECT value FROM _vt.local_metadata WHERE name='Alias'",

"DetectPromotionRuleQuery": "SELECT value FROM _vt.local_metadata WHERE
name='PromotionRule'",

"DetectSemiSyncEnforcedQuery": "SELECT @Qglobal.rpl_semi_sync_master_wait_no_slave AND

Q0@global.rpl_semi_sync_master_timeout > 1000000",

Vitess also needs to know the identity of the master for each shard. This is necessary in case of a failover.

It is important to ensure that orchestrator has access to vtctlclient so that orchestrator can trigger the change in topology
via the TabletExternallyReparented command.

"PostMasterFailoverProcesses": [
"echo 'Recovered from {failureType} on {failureCluster}. Failed: {failedHost}:{failedPort}l};
Promoted: {successorHost}:{successorPort}' >> /tmp/recovery.log",
"vtctlclient -server vtctld:15999 TabletExternallyReparented {successorAliasl}"
P

VTTablet configuration

Normally, you need to seed Orchestrator by giving it the addresses of MySQL instances in each shard. If you have lots of shards,
this could be tedious or error-prone.

Luckily, Vitess already knows everything about all the MySQL instances that comprise your cluster. So we provide a mechanism
for tablets to self-register with the Orchestrator API, configured by the following vttablet parameters:

e orc_api_url: Address of Orchestrator’s HTTP API (e.g. http://host:port/api/). Leave empty to disable Orchestrator
integration.

o orc_discover_interval: How often (e.g. 60s) to ping Orchestrator’s HTTP API endpoint to tell it we exist. 0 means
never.

Not only does this relieve you from the initial seeding of addresses into Orchestrator, it also means new instances will be
discovered immediately, and the topology will automatically repopulate even if Orchestrator’s backing store is wiped out. Note
that Orchestrator will forget stale instances after a configurable timeout.

238

https://github.com/github/orchestrator
https://github.com/github/orchestrator/wiki/Orchestrator-Manual
https://github.com/vitessio/vitess/blob/master/docker/orchestrator/orchestrator.conf.json

LDAP authentication

Currently, Vitess supports two ways to authenticate to vtgate via the MySQL protocol:

e Static: You provide a static configuration file to vtgate with user names and plaintext passwords or mysql_native_password
password hashes. This file can be reloaded without restarting vtgate. Further details can be found here.

e LDAP : You provide the necessary details of an upstream LDAP server, along with credentials and configuration, to query
it. Using this information, the LDAP passwords for a user can then be used to authenticate the same user against vtgate.
You can also integrate with LDAP groups to allow ACLs to be managed using information from the LDAP server.

In this guide, we will examine the capabilities of the vtgate LDAP integration and how to configure them.

Requirements

There are a few requirements that are necessary for the vtgate LDAP integration to work:

e The communication between vtgate and the LDAP server has to be encrypted.

e Encrypted communication to LDAP has to be via LDAP over TLS (STARTTLS) and not via LDAP over SSL (LDAPS).
The latter is not a standardized protocol and is not supported by Vitess. Ensure that your LDAP server and the LDAP
URI (hostname/port) that you provide supports STARTTLS.

o The application MySQL protocol connections to vtgate that use LDAP usernames/passwords need to use TLS. This is
required because of the next point, but can be bypassed. We strongly DO NOT recommend doing this.

e The application needs to be able to, and configured to, pass its password authentication using the cleartext MySQL
authentication protocol. This is why it is required that the MySQL connection to vtgate be encrypted first. This is
required because LDAP servers do not standardize their password hashes and, as a result, a cleartext password is required
by vtgate to bind (i.e. authenticate) against the LDAP server to verify the user’s password. Note that some applications
might not support passing cleartext MySQL passwords without alteration or configuration. An example is recent versions
of the MySQL CLI client mysql need the additional —-enable-cleartext-plugin option to allow the passing of cleartext
passwords.

Configuration

To configure vtgate to integrate with LDAP you will have to perform various tasks:

o Generate/obtain TLS certificate(s) for the vtgate server(s), and configure vtgate to use them. Further details can be
found here.
o Obtain or add the necessary LDAP user/groups for integration with vtgate. In general, you will need:

— LDAP user entries for each of the MySQL users you want to use at the vtgate level. An example might be a readonly
user, a readwrite user, and an admin/DBA user.

— Ensure these users are part of one or more LDAP groups. This is not strictly required by Vitess, but is leveraged to
obtain group membership that can then be used in Vitess (vttablet)ACLs. At the moment if you use an LDAP user
that is not a member of an LDAP group, the MySQL client authentication to vtgate will fail, even if the password
is correct.

o As mentioned above, you also need to have:

239

https://github.com/aquarapid/vitess_examples/blob/master/tls/securing_vitess.md

Your LDAP server setup for STARTTLS

— Obtained the LDAP URI to connect to the LDAP server

The CA certificate, that your LDAP server TLS certificate is signed by, in PEM format

Make sure that you are accessing the LDAP server via a hostname or IP SAN that is defined in your LDAP server
TLS certificate. If not, you will not be able to use your LDAP server as-is from vtgate.

Once you have your prerequisites above ready, you can now construct your JSON configuration file for vtgate using the command
line parameter -mysql_ldap_auth_config_file. The content of this file is a JSON format object with string key/value members

as follows:
{
"LdapServer": "ldapserver.example.org:389",
"LdapCert": "path/to/ldap-client-cert.pem",
"LdapKey": "path/to/ldap-client-key.pem",
"LdapCA": "path/to/ldap-server-ca.pem",
"User": "cn=admin,dc=example,dc=org",
"Password": "adminpassword!",
"GroupQuery": "ou=groups,ou=people,dc=example,dc=org",
"UserDnPattern": "uid=Ys,ou=users,ou=people,dc=example,dc=org",

3

"RefreshSeconds": 300

Not all these options are necessary in all configurations. Here are what each key/value option represents:

LdapServer : Hostname/IP and port to access the LDAP server via using STARTTLS. Note that as mentioned above,
this needs to match the server TLS certificate presented by the LDAP server. This is required.

LdapCert : Path to the local file that contains the PEM format TLS client certificate that you want to present to the
LDAP server. This is optional unless you use client-certificates with the LDAP server. If you are using this option, LdapKey
is also required.

LdapKey : Path to the local file that contains the PEM format TLS private key for the client certificate you want to
present to the LDAP server. This is optional unless you use client-certificates with the LDAP server. If you are using this
option, LdapCert is also required.

LdapCA : Path to the local file that contains the PEM format TLS CA certificate to verify against the TLS server
certificate presented by the LDAP server. This is required.

User : DN of the LDAP user you will be authenticating to the LDAP server to read information such as group membership.
Required, unless you are using LDAP client certificates to authenticate to the LDAP server. If you are using this option,
Password option is also required.

Password : Cleartext password for the LDAP user specified above in User. This is required, unless you are using LDAP
client certificates to authenticate to the LDAP server. If you are using this option, User option is also required.
GroupQuery : LDAP base DN from which to start the group membership query to establish the group of which the User
specified (or implied via the client certificate) is a member. The group membership query itself is hardcoded to the LDAP
query filter of (memberUid=%s) where %s is the authenticating username. This is required.

UserDnPattern : LDAP DN pattern to autofill with MySQL username passed during MySQL client authentication to
vtgate. This DN is then used, along with the password provided to vtgate, to attempt to bind with the LDAP server. If
the bind is sucessful, you know that the password provided to vtgate was valid. This is required.

RefreshSeconds : Number of seconds that you should cache individual LDAP credentials for in-memory at the vtgate.
This is used to reduce load on the LDAP for high traffic MySQL servers. As well as to avoid short LDAP server outages
from causing Vitess/vtgate authentication outages. Default value is 0, which means do not cache. For production it is
recommended to set this value to something reasonably high, for example at least a few minutes. This is optional.

Note that vtgate only does very basic validation of the values passed here and that incorrect configurations may just fail at
runtime. If you are lucky, relevant errors may be logged by vtgate, but in many cases incorrect configuration will just result in
a vtgate instance that you cannot log into via the MySQL protocol.

For debugging this, it is useful to have access to the logs from your LDAP server that you are pointing to. The logs would
preferably be at trace or debug level, so that you can see each LDAP bind and search operation against the LDAP server as you
are testing.

240

https://www.digitalocean.com/community/tutorials/how-to-encrypt-openldap-connections-using-starttls

Once you have constructed the above file, you will need to remove any options that references static authentication from your
vtgate command line such as:

e -mysql_auth_server_static_file

e -mysql_auth_server_static_string
e -mysql_auth_static_reload_interval
e -mysql_auth_server_impl static

and add the following new options:

-mysql_auth_server_impl ldap -mysql_ldap_auth_config_file /path/to/ldapconfig.json

Region-based Sharding

{{< info >}} This guide follows on from the Get Started guides. Please make sure that you have a local installation ready. You
should also have already gone through the MoveTables and Resharding tutorials. {{< /info >}}

Preparation

Having gone through the Resharding tutorial, you should be familiar with VSchema and Vindexes. In this tutorial, we will
perform resharding on an existing keyspace using a location-based vindex. We will create 4 shards (-40, 40-80, 80-c0, c0-). The
location will be denoted by a country column.

Schema

We will create one table in the unsharded keyspace to start with.

CREATE TABLE customer (
id int NOT NULL,
fullname varbinary(256),
nationalid varbinary(256),
country varbinary (256),
primary key(id)
E

The customer table is the main table we want to shard using country.

Region Vindex

We will use a region_json vindex to compute the keyspace_id for a customer row using the (id, country) fields. Here’s what
the vindex definition looks like:

"region_vdx": {
"type": "region_json",
"params": {
"region_map": "/home/user/my-vitess/examples/region_sharding/countries.json",
"region_bytes": "1"
}
X,

241

And we use it thus:

"customer": {
"column_vindexes": [
"columns": ["id", "country"l],
"name": "region_vdx"
Fo

This vindex uses a byte mapping of countries provided in a JSON file and combines that with the id column in the customer
table to compute the keyspace_id. This is what the JSON file contains:

{
"United States": 1,
"Canada": 2,
"France": 64,
"Germany": 65,
"China": 128,
"Japan": 129,
"India": 192,
"Indonesia": 193

}

The values for the countries have been chosen such that 2 countries fall into each shard.

In this example, we are using 1 byte to represent a country code. You can use 1 or 2 bytes. With 2 bytes, 65536 distinct locations
can be supported. The byte value of the country(or other location identifier) is prefixed to a hash value computed from the id to
produce the keyspace_id. This will be primary vindex on the customer table. As such, it is sufficient for resharding, inserts and
selects. However, we don’t yet support updates and deletes using a multi-column vindex. In order for those to work, we need
to create a lookup vindex that can used to find the correct rows by id. The lookup vindex also makes querying by id efficient.
Without it, queries that provided id but not country will scatter to all shards.

To do this, we will use the new vreplication workflow CreateLookupVindex. This workflow will create the lookup table and a
lookup vindex. It will also associate the lookup vindex with the customer table.

Start the Cluster

Start by copying the region_sharding example included with Vitess to your preferred location.

cp -r /usr/local/vitess/examples/region_sharding ~/my-vitess/examples/region_sharding

cd ~/my-vitess/examples/region_sharding

The VSchema for this tutorial uses a config file. You will need to edit the value of the region_map parameter in the vschema

file main_vschema_sharded. json. For example:

"region_map": "/home/user/my-vitess/examples/region_sharding/countries.json",

Now start the cluster

./101 initial_cluster.sh

You should see output similar to the following:

~/my-vitess-example> ./101_initial_cluster.sh
add /vitess/global

add /vitess/zonel

add zonel CelllInfo

etcd start done...

Starting vtctld...

242

Starting MySQL for tablet zonel-0000000100...
Starting vttablet for zonel-0000000100...
HTTP/1.1 200 OK

Date: Mon, 17 Aug 2020 14:20:08 GMT
Content-Type: text/html; charset=utf-8

w0817 07:20:08.822742 7735 main.go:64] W0817 14:20:08.821985 reparent.go:185]
master-elect tablet zonel-0000000100 is not the shard master, proceeding anyway as
-force was used

W0817 07:20:08.823004 7735 main.go:64] W0817 14:20:08.822370 reparent.go:191]
master-elect tablet zonel-0000000100 is not a master in the shard, proceeding anyway as
-force was used

I0817 07:20:08.823239 7735 main.go:64] I0817 14:20:08.823075 reparent.go:222] resetting
replication on tablet zonel-0000000100

10817 07:20:08.833215 7735 main.go:64] I0817 14:20:08.833019 reparent.go:241]
initializing master on zonel-0000000100

I0817 07:20:08.849955 7735 main.go:64] I0817 14:20:08.849736 reparent.go:274] populating
reparent journal on new master zonel-0000000100

New VSchema object:

{

"tables": {

"customer": {

I
X
X
If this is not what you expected, check the input data (as JSON parsing will skip
unexpected fields).
Waiting for vtgate to be up...
vtgate is up!
Access vtgate at http://localhost:15001/debug/status

You can also verify that the processes have started with pgrep:

~/my-vitess-example> pgrep -fl vtdataroot
9160 etcd

9222 vtctld

9280 mysqld_safe

9843 mysqld

9905 vttablet

10040 vtgate

10224 mysqld

The exact list of processes will vary. For example, you may not see mysqld_safe listed.
If you encounter any errors, such as ports already in use, you can kill the processes and start over:

pkill -9 -e -f '(vtdataroot|VTDATAROOT)' # kill Vitess processes
rm -rf vtdataroot

Aliases

For ease-of-use, Vitess provides aliases for mysql and vtctlclient. These are automatically created when you start the cluster.

source ./env.sh

243

Setting up aliases changes mysql to always connect to Vitess for your current session. To revert this, type unalias mysql &&
unalias vtctlclient or close your session.

Connect to your cluster

You should now be able to connect to the VT'Gate server that was started in 101_initial_cluster.sh:

~/my-vitess-example> mysql

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2

Server version: 5.7.9-Vitess (Ubuntu)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show tables;

- +
| Tables_in_vt_main |
- +
| customer |
o mmmmmm e +

1 row in set (0.01 sec)

Insert some data into the cluster

~/my-vitess-example> mysql < insert_customers.sql

Examine the data we just inserted

~/my-vitess-example> mysql --table < show_initial_data.sql

fommmpmmmmm e Fommm - e ittt +
| id | fullname | nationalid | country

et i e T e ettt fommmm e +
| 1 | Philip Roth | 123-456-789 | United States |
| 2 | Gary Shteyngart | 234-567-891 | United States |
| 3 | Margaret Atwood | 345-678-912 | Canada I
| 4 | Alice Munro | 456-789-123 | Canada

| 5 | Albert Camus | 912-345-678 | France |
| 6 | Colette | 102-345-678 | France

| 7 | Hermann Hesse | 304-567-891 | Germany |
| 8 | Cornelia Funke | 203-456-789 | Germany I
| 9 | Cixin Liu | 789-123-456 | China |
| 10 | Jian Ma | 891-234-567 | China

| 11 | Haruki Murakami | 405-678-912 | Japan

244

12	Banana Yoshimoto	506-789-123	Japan
13	Arundhati Roy	567-891-234	India
14	Shashi Tharoor	678-912-345	India
15	Andrea Hirata	607-891-234	Indonesia
16	Ayu Utami	708-912-345	Indonesia

e Tt Fmmm - Fmmm - +

Prepare for resharding

Now that we have some data in our unsharded cluster, let us go ahead and perform the setup needed for resharding. The initial
vschema is unsharded and simply lists the customer table (see script output above). We are going to first apply the sharding
vschema to the cluster from main_vschema_sharded. json

{
"sharded": true,
"vindexes": {
"region_vdx": {
"type": "region_json",
"params": {
"region_map": "/home/user/my-vitess/examples/region_sharding/countries. json",
"region_bytes": "1"
}
}
},
"tables": {
"customer": {
"column_vindexes": [
{
"columns": ["id", "country"],
"name": "region_vdx"
}
]
}
}
}

Then we will create a lookup vindex (CreateLookupVindex) using the definition in lookup_vindex.json

Here is the lookup vindex definition. Here we both define the lookup vindex, and associate it with the customer table.

{

"sharded": true,
"vindexes": {
"customer_region_lookup": {
"type": "consistent_lookup_unique",
"params": {
"table": "main.customer_lookup",
llfromll: llidll’
"to": "keyspace_id"
e
"owner": '"customer"
}
},
"tables": {
"customer": {
"column_vindexes": [

245

"column": "id",
n n. n 1 n
name": "customer_region_lookup

Once the vindex is available, we have to Externalize it for it to be usable. Putting this all together, we run the script that
combines the above steps.

./201 _main_sharded.sh

Once this is complete, we can view the new vschema. Note that it now includes both region_vdx and a lookup vindex.

~/my-vitess-example> vtctlclient GetVSchema main

{
"sharded": true,
"vindexes": {
"customer_region_lookup": {
"type": "consistent_lookup_unique",
"params": {
Ilfromll: Ilidll ,
"table": "main.customer_lookup",
"to": "keyspace_id"
},
"owner": "customer"
s
"hash": {
"type": "hash"
s,
"region_vdx": {
"type": "region_json",
"params": {
"region_bytes": "1",
"region_map": "/home/user/my-vitess/examples/region_sharding/countries.json"
}
3
I
"tables": {
"customer": {
"columnVindexes": [
{
"name": "region_vdx",
"columns": [
"id",
"country"
]
o
{
"column": "id",
"name": "customer_region_lookup"
}
]
s
"customer_lookup": {
"columnVindexes": [

246

"column": "id",
"name": "hash"

Notice that the vschema shows a hash vindex on the lookup table. This is automatically created by the workflow. Creating
a lookup vindex via CreateLookupVindex also creates the backing table needed to hold the vindex, and populates it with the
correct rows. We can see that by checking the database.

mysql> show tables;

T TR +
| Tables_in_vt_main |
Fmm e +
| customer |
| customer_lookup |
T TR +

2 rows in set (0.00 sec)

mysql> describe customer_lookup;

fommmm e Fommmmm e t-————= - e et tomm— - +
| Field | Type | Null | Key | Default | Extra |
Fommmm - Fmmmmmm e +-————= - e tom— - +
| id | int (11) | NO | PRI | NULL I |
| keyspace_id | varbinary(128) | YES | | NULL | |
dommmmm e fommm e t-————= - tomm tom— - +
2 rows in set (0.01 sec)

mysql> select id, hex(keyspace_id) from customer_lookup;

B e +
| id | hex(keyspace_id) |
Fo—— et —————————————————— +
1	01166B40B44ABA4BD6
2	0106E7TEA22CE92708F
3	024EB190C9A2FA169C
4	02D2FD8867D50D2DFE
5	4070BB023C810CA87A
6	40F098480AC4C4BE71
7	41FBSBAAAD918119B8
8	41CCO83F1EBDI9ES5F6
9	80692BB9BF752BOF58
10	80594764E1A2B2D9SE
11	81AEFC44491CFE474C
12	81D3748269B7058A0E
13	C062DCE203C602F358
14	COACBFDAOD70613FC4
15	C16A8B56ED414942B8
16	C15B711BC4CEEBF2EE
S e e et +

16 rows in set (0.01 sec)
Once the sharding vschema and lookup vindex (+table) are ready, we can bring up the sharded cluster. Since we have 4 shards,

we will bring up 4 sets of vttablets, 1 per shard. In this example, we are deploying only 1 tablet per shard and disabling
semi-sync, but in general each shard will consist of at least 3 tablets.

247

./202 _new_tablets.sh

Starting MySQL for tablet zonel-0000000200...
Starting vttablet for zonel-0000000200...
HTTP/1.1 200 OK

Date: Mon, 17 Aug 2020 15:07:41 GMT
Content-Type: text/html; charset=utf-8

Starting MySQL for tablet zonel-0000000300...
Starting vttablet for zonel-0000000300...
HTTP/1.1 200 OK

Date: Mon, 17 Aug 2020 15:07:46 GMT
Content-Type: text/html; charset=utf-8

Starting MySQL for tablet zonel-0000000400...
Starting vttablet for zonel-0000000400...
HTTP/1.1 200 OK

Date: Mon, 17 Aug 2020 15:07:50 GMT
Content-Type: text/html; charset=utf-8

Starting MySQL for tablet zonel-0000000500...
Starting vttablet for zonel-0000000500...
HTTP/1.1 200 OK

Date: Mon, 17 Aug 2020 15:07:55 GMT
Content-Type: text/html; charset=utf-8

w0817 08:07:55.217317 15230 main.go:64] W0817 15:07:55.215654 reparent.go:185]
master-elect tablet zonel-0000000200 is not the shard master, proceeding anyway as
-force was used

w0817 08:07:55.218083 15230 main.go:64] W0817 15:07:55.215771 reparent.go:191]
master-elect tablet zonel-0000000200 is not a master in the shard, proceeding anyway as
-force was used

10817 08:07:55.218121 15230 main.go:64] I0817 15:07:55.215918 reparent.go:222] resetting
replication on tablet zonel-0000000200

I0817 08:07:55.229794 15230 main.go:64] I0817 15:07:55.229416 reparent.go:241]
initializing master on zonel-0000000200

I0817 08:07:55.249680 15230 main.go:64] I0817 15:07:55.249325 reparent.go:274] populating
reparent journal on new master zonel-0000000200

W0817 08:07:55.286894 15247 main.go:64] W0817 15:07:55.286288 reparent.go:185]
master-elect tablet zonel-0000000300 is not the shard master, proceeding anyway as
-force was used

w0817 08:07:55.287392 15247 main.go:64] W0817 15:07:55.286354 reparent.go:191]
master-elect tablet zonel-0000000300 is not a master in the shard, proceeding anyway as
-force was used

I0817 08:07:55.287411 15247 main.go:64] I0817 15:07:55.286448 reparent.go:222] resetting
replication on tablet zonel-0000000300

I0817 08:07:55.300499 15247 main.go:64] I0817 15:07:55.300276 reparent.go:241]
initializing master on zonel-0000000300

I0817 08:07:55.324774 15247 main.go:64] I0817 15:07:55.324454 reparent.go:274] populating
reparent journal on new master zonel-0000000300

w0817 08:07:55.363497 15264 main.go:64] W0817 15:07:55.362451 reparent.go:185]
master-elect tablet zonel-0000000400 is not the shard master, proceeding anyway as
-force was used

w0817 08:07:55.364061 15264 main.go:64] W0817 15:07:55.362569 reparent.go:191]
master-elect tablet zonel-0000000400 is not a master in the shard, proceeding anyway as
-force was used

I0817 08:07:55.364079 15264 main.go:64] I0817 15:07:55.362689 reparent.go:222] resetting

248

replication on tablet zonel-0000000400

I0817 08:07:55.378370 15264 main.go:64] I0817 15:07:55.378201 reparent.go:241]
initializing master on zonel-0000000400

10817 08:07:55.401258 15264 main.go:64] I0817 15:07:55.400569 reparent.go:274] populating
reparent journal on new master zonel-0000000400

w0817 08:07:55.437158 15280 main.go:64] W0817 15:07:55.435986 reparent.go:185]
master-elect tablet zonel-0000000500 is not the shard master, proceeding anyway as
-force was used

W0817 08:07:55.437953 15280 main.go:64] W0817 15:07:55.436038 reparent.go:191]
master-elect tablet zonel-0000000500 is not a master in the shard, proceeding anyway as
-force was used

I0817 08:07:55.437982 15280 main.go:64] I0817 15:07:55.436107 reparent.go:222] resetting
replication on tablet zonel-0000000500

I0817 08:07:55.449958 15280 main.go:64] I0817 15:07:55.449725 reparent.go:241]
initializing master on zonel-0000000500

I0817 08:07:55.467790 15280 main.go:64] I0817 15:07:55.466993 reparent.go:274] populating
reparent journal on new master zonel-0000000500

Perform Resharding

Once the tablets are up, we can go ahead with the resharding.

./203 _reshard.sh

This script has only one command: Reshard

vtctlclient Reshard -tablet_types=MASTER main.main2regions 'O' '-40,40-80,80-c0,cO-"'

Let us unpack this a bit. Since we are running only master tablets in this cluster, we have to tell the Reshard command to use
them as the source for copying data into the target shards. The next argument is of the form keyspace.workflow. keyspace
is the one we want to reshard. workflow is an identifier chosen by the user. It can be any arbitrary string and is used to tie the
different steps of the resharding flow together. We will see it being used in subsequent steps. Then we have the source shard 0
and target shards -40,40-80,80-c0, c0O-

This step copies all the data from source to target and sets up vreplication to keep the targets in sync with the source
We can check the correctness of the copy using VDiff and the keyspace.workflow we used for Reshard

vtctlclient VDiff main.main2regions

10817 08:22:53.958578 16065 main.go:64] I0817 15:22:53.956743 traffic_switcher.go:389]
Migration ID for workflow main2regions: 7369191857547657706

Summary for customer: {ProcessedRows:16 MatchingRows:16 MismatchedRows:0 ExtraRowsSource:0
ExtraRowsTarget :0}

Let’s take a look at the vreplication streams

vtctlclient VReplicationExec zonel-0000000200 'select * from _vt.vreplication'

fomm b m e Fmm - oo
| id | workflow | source | pos
| stop_pos | max_tps | max_replication_lag | cell |
tablet_types | time_updated | transaction_timestamp | state | message | db_name |
e e Fmm - Tt e e E
| 1 | main2regions | keyspace:"main" shard:"0" |
MySQL56/cd3b495a-e096-11ea-9088-34e12d1e6711:1-44 | | 9223372036854775807 |
9223372036854775807 | | MASTER | 1597676983 | 0 |
Running | | vt_main |

249

| filter:<rules:<match:"/.*x"

| filter:"-40" >

>

+

We have a running stream on tablet 200 (shard -40) that will keep it up-to-date with the source shard (0)

Cutover

Once the copy process is complete, we can start cutting-over traffic. This is done in 2 steps, SwitchReads and SwitchWrites.
Note that the commands are named for the tablet_types and not user operations. Reads is used for replica/rdonly, and Writes
for master. Read operations on master will not be affected by a SwitchReads.

./204 _switch_reads.sh
./205_switch _writes.sh

Let us take a look at the sharded data

mysql> use main/-40;
Database changed

mysql> select * from cust
e femmmmm=m=====
| id fullname

t————t = =

|
+
| Philip Roth
| Gary Shteyngart
| Margaret Atwood
| Alice Munro

+

~ t — — — — 4 —

4 rows in set (0.01 sec

omer ;

123-456-789
234-567-891
345-678-912
456-789-123

mysql> select id,hex(keyspace_id) from

e ettt
| id | hex(keyspace_id)

e T
| 1 | 01166B40B44ABA4BD6
| 2 | 0106E7EA22CE92708F
e e e P

2 rows in set (0.00 sec)

-+
|

-+

-+

United
United
Canada
Canada

States
States

customer_lookup;

You can see that only data from US and Canada exists in the customer table in this shard. Repeat this for the other shards
(40-80, 80-c0 and c0-) and see that each shard contains 4 rows in customer table.

The lookup table, however, has a different number of rows. This is because we are using a hash vindex to shard the lookup table
which means that it is distributed differently from the customer table. If we look at the next shard 40-80:

mysql> use main/40-80;

Database changed

mysql> select id, hex(keyspace_id) from customer_lookup;

B e ettt P PP PP

-+

250

| id | hex(keyspace_id) |
Fomm—m——————————————————— +
3	024EB190C9A2FA169C
5	4070BB023C810CA87A
9	80692BB9BF752BOF58
10	80594764E1A2B2D9SE
13	C062DCE203C602F358
15	C16A8B56ED414942B8
16	C15B711BC4CEEBF2EE
B i e +

7 rows in set (0.00 sec)

Drop source

Once resharding is complete, we can teardown the source shard
./206 _down_shard_0.sh
./207 delete_shard_0.sh

What we have now is a sharded keyspace. The original unsharded keyspace no longer exists.

Teardown

Once you are done playing with the example, you can tear it down completely.

./301_teardown.sh
rm -rf vtdataroot

Reparenting

Reparenting is the process of changing a shard’s master tablet from one host to another or changing a replica tablet to
have a different master. Reparenting can be initiated manually or it can occur automatically in response to particular database
conditions. As examples, you might reparent a shard or tablet during a maintenance exercise or automatically trigger reparenting
when a master tablet dies.

This document explains the types of reparenting that Vitess supports:

o Active reparenting occurs when Vitess manages the entire reparenting process.
o External reparenting occurs when another tool handles the reparenting process, and Vitess just updates its topology service,
replication graph, and serving graph to accurately reflect master-replica relationships.

Note: The InitShardMaster command defines the initial parenting relationships within a shard. That command makes the
specified tablet the master and makes the other tablets in the shard replicas that replicate from that master.

MySQL requirements

251

GTIDs Vitess requires the use of global transaction identifiers (GTIDs) for its operations:

e During active reparenting, Vitess uses GTIDs to initialize the replication process and then depends on the GTID stream
to be correct when reparenting. (During external reparenting, Vitess assumes the external tool manages the replication
process.)

¢ During resharding, Vitess uses GTIDs for VReplication, the process by which source tablet data is transferred to the proper
destination tablets.

Semisynchronous replication Vitess does not depend on semisynchronous replication but does work if it is implemented.
Larger Vitess deployments typically do implement semisynchronous replication.

Active Reparenting You can use the following vtctl commands to perform reparenting operations:

e PlannedReparentShard
e EmergencyReparentShard

Both commands lock the Shard record in the global topology service. The two commands cannot run in parallel, nor can either
command run in parallel with the InitShardMaster command.

Both commands are both dependent on the global topology service being available, and they both insert rows in the topology
service’s _vt.reparent_journal table. As such, you can review your database’s reparenting history by inspecting that table.

PlannedReparentShard: Planned reparenting The PlannedReparentShard command reparents a healthy master tablet
to a new master. The current and new master must both be up and running.

This command performs the following actions:

1. Puts the current master tablet in read-only mode.

2. Shuts down the current master’s query service, which is the part of the system that handles user SQL queries. At this
point, Vitess does not handle any user SQL queries until the new master is configured and can be used a few seconds later.

3. Retrieves the current master’s replication position.

4. Instructs the master-elect tablet to wait for replication data and then begin functioning as the new master after that data
is fully transferred.

5. Ensures replication is functioning properly via the following steps:

¢ On the master-elect tablet, insert an entry in a test table and then update the global Shard object’s MasterAlias
record.

o In parallel on each replica, including the old master, set the new master and wait for the test entry to replicate to the
replica tablet. Replica tablets that had not been replicating before the command was called are left in their current
state and do not start replication after the reparenting process.

e Start replication on the old master tablet so it catches up to the new master.

In this scenario, the old master’s tablet type transitions to spare. If health checking is enabled on the old master, it will likely
rejoin the cluster as a replica on the next health check. To enable health checking, set the target_tablet_type parameter when
starting a tablet. That parameter indicates what type of tablet that tablet tries to be when healthy. When it is not healthy, the
tablet type changes to spare.

EmergencyReparentShard: Emergency reparenting The EmergencyReparentShard command is used to force a reparent
to a new master when the current master is unavailable. The command assumes that data cannot be retrieved from the current
master because it is dead or not working properly.

As such, this command does not rely on the current master at all to replicate data to the new master. Instead, it makes sure
that the master-elect is the most advanced in replication within all of the available replicas.

252

https://dev.mysql.com/doc/refman/5.6/en/replication-gtids-concepts.html
https://dev.mysql.com/doc/refman/5.6/en/replication-semisync.html

Important: Before calling this command, you must first identify the replica with the most advanced replication position as that
replica must be designated as the new master. You can use the vtctl ShardReplicationPositions command to determine
the current replication positions of a shard’s replicas.

This command performs the following actions:

1. Determines the current replication position on all of the replica tablets and confirms that the master-elect tablet has the
most advanced replication position.

2. Promotes the master-elect tablet to be the new master. In addition to changing its tablet type to master, the master-elect
performs any other changes that might be required for its new state.

3. Ensures replication is functioning properly via the following steps:

e On the master-elect tablet, Vitess inserts an entry in a test table and then updates the MasterAlias record of the
global Shard object.

e In parallel on each replica, excluding the old master, Vitess sets the master and waits for the test entry to replicate
to the replica tablet. Replica tablets that had not been replicating before the command was called are left in their
current state and do not start replication after the reparenting process.

External Reparenting

External reparenting occurs when another tool handles the process of changing a shard’s master tablet. After that occurs, the
tool needs to call the vtctl TabletExternallyReparented command to ensure that the topology service, replication graph,
and serving graph are updated accordingly.

That command performs the following operations:

Reads the Tablet from the local topology service.

Reads the Shard object from the global topology service.

If the Tablet type is not already MASTER, sets the tablet type to MASTER.

The Shard record is updated asynchronously (if needed) with the current master alias.

Any other tablets that still have their tablet type to MASTER will demote themselves to REPLICA.

GU o=

The TabletExternallyReparented command fails in the following cases:
e The global topology service is not available for locking and modification. In that case, the operation fails completely.

Active reparenting might be a dangerous practice in any system that depends on external reparents. You can disable active
reparents by starting vtctld with the --disable_active_reparents flag set to true. (You cannot set the flag after vtctld is
started.)

Fixing Replication
A tablet can be orphaned after a reparenting if it is unavailable when the reparent operation is running but then recovers later

on. In that case, you can manually reset the tablet’s master to the current shard master using the vtctl ReparentTablet
command. You can then restart replication on the tablet if it was stopped by calling the vtctl StartReplication command.

Resharding

{{< info >}} This guide follows on from the Get Started guides. Please make sure that you have an Operator, local or Helm
installation ready. {{< /info >}}

253

Preparation

Resharding enables you to both initially shard and reshard tables so that your keyspace is partitioned across several underlying
tablets. A sharded keyspace has some additional restrictions on both query syntax and features such as auto_increment, so it
is helpful to plan out a reshard operation diligently. However, you can always reshard again if your sharding scheme turns out
to be suboptimal.

Using our example commerce and customer keyspaces, lets work through the two most common issues.

Sequences The first issue to address is the fact that customer and corder have auto-increment columns. This scheme does
not work well in a sharded setup. Instead, Vitess provides an equivalent feature through sequences.

The sequence table is an unsharded single row table that Vitess can use to generate monotonically increasing IDs. The syntax
to generate an id is: select next :n values from customer_seq. The vttablet that exposes this table is capable of serving
a very large number of such IDs because values are cached and served out of memory. The cache value is configurable.

The VSchema allows you to associate a column of a table with the sequence table. Once this is done, an insert on that table
transparently fetches an id from the sequence table, fills in the value, and routes the row to the appropriate shard. This makes
the construct backward compatible to how MySQL’s auto_increment property works.

Since sequences are unsharded tables, they will be stored in the commerce database. Here is the schema:

CREATE TABLE customer_seq (id int, next_id bigint, cache bigint, primary key(id)) comment
'vitess_sequence';

INSERT INTO customer_seq (id, next_id, cache) VALUES (0, 1000, 100);

CREATE TABLE order_seq (id int, next_id bigint, cache bigint, primary key(id)) comment
'vitess_sequence';

INSERT INTO order_seq (id, next_id, cache) VALUES (0, 1000, 100);

Note the vitess_sequence comment in the create table statement. VTTablet will use this metadata to treat this table as a
sequence.

e id is always 0
e next_id is set to 1000: the value should be comfortably greater than the auto_increment max value used so far.
e cache specifies the number of values to cache before vttablet updates next_id.

Larger cache values perform better, but will exhaust the values quicker, since during reparent operations the new master will
start off at the next_id value.

The VTGate servers also need to know about the sequence tables. This is done by updating the VSchema for commerce as
follows:

{
"tables": {
"customer_seq": {
"type": "sequence"
s
"order_seq": {
"type": "sequence"
X,
"product": {}
3
}

Vindexes The next decision is about the sharding keys, or Primary Vindexes. This is a complex decision that involves the
following considerations:

e What are the highest QPS queries, and what are the WHERE clauses for them?

254

e Cardinality of the column; it must be high.
e Do we want some rows to live together to support in-shard joins?
e Do we want certain rows that will be in the same transaction to live together?

Using the above considerations, in our use case, we can determine that:

e For the customer table, the most common WHERE clause uses customer_id. So, it shall have a Primary Vindex.

o Given that it has lots of users, its cardinality is also high.

e For the corder table, we have a choice between customer_id and order_id. Given that our app joins customer with
corder quite often on the customer_id column, it will be beneficial to choose customer_id as the Primary Vindex for the
corder table as well.

« Coincidentally, transactions also update corder tables with their corresponding customer rows. This further reinforces
the decision to use customer_id as Primary Vindex.

There are a couple of other considerations out of scope for now, but worth mentioning:
e It may also be worth creating a secondary lookup Vindex on corder.order_id.
e Sometimes the customer_id is really a tenant_id. For example, your application is a SaaS, which serves tenants that
themselves have customers. One key consideration here is that the sharding by the tenant_id can lead to unbalanced

shards. You may also need to consider sharding by the tenant’s customer_id.

Putting it all together, we have the following VSchema for customer:

{
"sharded": true,
"vindexes": {
"hash": {
lltypell: Ilhashll
}
},
"tables": {
"customer": {
"column_vindexes": [
{
"column": "customer_id",
"name": "hash"
}

1.

"auto_increment": {
"column": "customer_id",
"sequence": "customer_seq"

}

I
"corder": {
"column_vindexes": [
{
"column": "customer_id",
"name": "hash"
}

]

"auto_increment": {
"column": "order_id",
"sequence": "order_seq"

}

}
}
}

255

Since the primary vindex columns are BIGINT, we choose hash as the primary vindex, which is a pseudo-random way of
distributing rows into various shards. For other data types:

e For VARCHAR columns, use unicode_loose_md5 or unicode_loose_xxhash.

o For VARBINARY, use binary_md5 or xxhash.

e Vitess uses a plugin system to define vindexes. If none of the predefined vindexes suit your needs, you can develop your
own custom vindex.

Apply VSchema

Applying the new VSchema instructs Vitess that the keyspace is sharded, which may prevent some complex queries. It is a good
idea to validate this before proceeding with this step. If you do notice that certain queries start failing, you can always revert
temporarily by restoring the old VSchema. Make sure you fix all of the queries before proceeding to the Reshard process.

helm upgrade vitess ../../helm/vitess/ -f 301_customer_sharded.yaml

vtctlclient ApplySchema -sql="$(cat create_commerce_seq.sql)" commerce
vtctlclient ApplyVSchema -vschema="$(cat vschema_commerce_seq.json)" commerce
vtctlclient ApplySchema -sql="$(cat create_customer_sharded.sql)" customer
vtctlclient ApplyVSchema -vschema="$(cat vschema_customer_sharded. json)" customer

vtctlclient ApplySchema -sql-file create_commerce_seq.sql commerce
vtctlclient ApplyVSchema -vschema_file vschema_commerce_seq.json commerce
vtctlclient ApplySchema -sql-file create_customer_sharded.sql customer
vtctlclient ApplyVSchema -vschema_file vschema_customer_sharded. json customer

Create new shards
At this point, you have finalized your sharded VSchema and vetted all the queries to make sure they still work. Now, it’s time
to reshard.

The resharding process works by splitting existing shards into smaller shards. This type of resharding is the most appropriate
for Vitess. There are some use cases where you may want to bring up a new shard and add new rows in the most recently created
shard. This can be achieved in Vitess by splitting a shard in such a way that no rows end up in the ‘new’ shard. However, it’s
not natural for Vitess. We have to create the new target shards:

helm upgrade vitess ../../helm/vitess/ -f 302_new_shards.yaml

kubectl apply -f 302_new_shards.yaml

Make sure that you restart the port-forward after you have verified with kubectl get pods that this operation has completed:

killall kubectl
./pf.sh &

256

for i in 300 301 302; do

CELL=zonel TABLET_UID=$i ./scripts/mysqlctl-up.sh

SHARD=-80 CELL=zonel KEYSPACE=customer TABLET_UID=$i ./scripts/vttablet-up.sh
done

for i in 400 401 402; do

CELL=zonel TABLET_UID=$i ./scripts/mysqlctl-up.sh

SHARD=80- CELL=zonel KEYSPACE=customer TABLET_UID=$i ./scripts/vttablet-up.sh
done

vtctlclient InitShardMaster -force customer/-80 zonel-300
vtctlclient InitShardMaster -force customer/80- zonel-400

Start the Reshard

This process starts the reshard operation. It occurs online, and will not block any read or write operations to your database:

With Helm and Local Installation

vtctlclient Reshard customer.cust2cust 'O' '-80,80-"'
With Operator
vtctlclient Reshard customer.cust2cust '-' '-80,80-'

Validate Correctness

After the reshard is complete, we can use VDiff to check data integrity and ensure our source and target shards are consistent:

vtctlclient VDiff customer.cust2cust

You should see output similar to the following:

Summary for customer: {ProcessedRows:5 MatchingRows:5 MismatchedRows:0 ExtraRowsSource:0
ExtraRowsTarget :0}

Summary for corder: {ProcessedRows:5 MatchingRows:5 MismatchedRows:0 ExtraRowsSource:0
ExtraRowsTarget:0}

Switch Reads

After validating for correctness, the next step is to switch read operations to occur at the new location. By switching read
operations first, we are able to verify that the new tablet servers are healthy and able to respond to requests:

vtctlclient SwitchReads -tablet_type=rdonly customer.cust2cust
vtctlclient SwitchReads -tablet_type=replica customer.cust2cust

Switch Writes

After reads have been switched, and the health of the system has been verified, it’s time to switch writes. The usage is very
similar to switching reads:

vtctlclient SwitchWrites customer.cust2cust

257

You should now be able to see the data that has been copied over to the new shards:

mysql --table < ../common/select_customer -80_data.sql
Using customer/-80

Customer

e T Fmm e +

| customer_id | email

o T +

| 1 | alice@domain.com |

| 2 | bob@domain.com |

| 3 | charlie@domain.com |

| 5 | eve@domain.com |

fommmmm e . +

COrder

o ——— o o o +
| order_id | customer_id | sku | price |
fmm e o fmm———— +
| 1 1 | SKU-1001 | 100 |
| 2 | 2 | SKU-1002 | 30 |
I 3| 3 | SKU-1002 | 30 |
I 5 | 5 | SKU-1002 | 30 |
o o o fm————— +

mysql --table < ../common/select_customer80-_data.sql
Using customer/80-

Customer

Fmm - o +

| customer_id | email

Fmm - o +

| 4 | dan@domain.com |
e e +

COrder

Fmm - Fmm - Fmm - o +
| order_id | customer_id | sku | price |
o —— - Fmm e Fmm - o —— +
| 4 | 4 | SKU-1002 | 30 |
B o e e +
Cleanup

After celebrating your second successful resharding, you are now ready to clean up the leftover artifacts:

helm upgrade vitess ../../helm/vitess/ -f 306_down_shard_0.yaml

kubectl apply -f 306 _down_shard_O.yaml

258

for i in 200 201 202; do

CELL=zonel TABLET_UID=$i ./scripts/vttablet-down.sh
CELL=zonel TABLET_UID=$i ./scripts/mysqlctl-down.sh
done

In this script, we just stopped all tablet instances for shard 0. This will cause all those vttablet and mysqld processes to be
stopped. But the shard metadata is still present. After Vitess brings down all vttablets, we can clean that up with this command:

vtctlclient DeleteShard -recursive customer/0

Beyond this, you will also need to manually delete the disk associated with this shard.

Tracing

Vitess tracing

Vitess allows you to generate Jaeger / OpenTracing compatible trace events from the Vitess major server components: vtgate,
vttablet, and vtctld. To sync these trace events you need an OpenTracing compatible server (e.g. Jaeger). Vitess can send
tracing events to this server in the Jaeger compact Thrift protocol wire format which is usually UDP on port 6381.

Configuring tracing

The first step of configuring tracing is to make sure you have tracing collectors properly setup. The tracing collectors must be
located where they can be reached from the various Vitess components on which you want to configure tracing. We will not
cover the entire setup process in this guide. The guide will cover the minimal config for testing/running locally, using the Jaeger
docker container running on localhost. You can read more about Jaeger here.

Running Jaeger in docker You can follow the Jaeger getting started documentation here. In essence you need to run the
Jaeger docker container:

$ docker run -d --name jaeger \
-e COLLECTOR_ZIPKIN HTTP PORT=9411 \
-p 5775:5775/udp \
-p 6831:6831/udp \
-p 6832:6832/udp \
-p 5778:5778 \
-p 16686:16686 \
-p 14268:14268 \
-p 14250:14250 \
-p 9411:9411 \
jaegertracing/all-in-one:1.20

Note that you don’t need to expose all these ports, Vitess only cares about port 6831 (the UDP compact Thrift Jaeger protocol
listener). You will also need port 16686 for the Jaeger web UI to browse the spans reported.

259

https://www.jaegertracing.io/docs/1.20/features/
https://www.jaegertracing.io/docs/1.20/getting-started/

Configuring tracing for vtgate, vttablet and vtctld Now that you have the Jaeger server running, you can add the
necessary startup options to vtgate, vttablet and vtctld. This will enable you to send trace spans to the server. The
command line options for doing this are the same across vtgate, vttablet and vtctld. Add the following options for a tracing
agent running on the localhost:

-tracer opentracing-jaeger -jaeger-agent-host 127.0.0.1:6831 -tracing-sampling-rate 0.0

There are a few things to note:

e There are other tracing plugins and the —tracer option allows you to select them. Currently we have opentracing-jaeger
and opentracing-datadog. Only opentracing-jaeger is covered in this document.

e —jaeger-agent-host should point to the hostname:port or ip:port of the tracing collector running the Jaeger compact
Thrift protocol.

o The tracing sample rate (-tracing-sampling-rate) is expressed as a fraction from 0.0 (no sampling) to 1.0 (100% of all
events are sent to the server). In the example, this option is set to zero, because we will be passing custom span contexts
to the queries we want to trace. In this way, we only instrument the queries we want. This is recommended for large
installations because it is typically very hard to organize and consume the volume of tracing events generated by even a
small fraction of events from a non-trivial production Vitess system. However, if you just want events to flow automatically
without you having to instrument queries, you can set this to a value other than 0.0 and skip the following section on
instrumenting queries.

After adding these options, you must restart the Vitess components in question.

Instrumenting queries Now that you have the Vitess components setup, you can start instrumenting your queries to choose
which queries (or application actions) for which you want to generate trace events. This is obviously an application-specific
process, but there are a few things to note:

e The SpanContext id you have to instrument your Vitess queries with, in order for them to generate trace events, has a
very specific format. It is recommended to use one of the Jaeger / OpenTracing client libraries to generate these for you.
They take the format of a base64 string of a JSON object that, at it simplest, looks something like this:

{"uber-trace-id":"{trace-id}:{span-id}:{parent-span-id}:{flags}"}

Note the very specific format requirements in the documentation. Because of these requirements, it can be tiresome to
generate them yourself, and it is more convenient to use the client libraries instead.

e Once you have the SpanContext string in its encoded base64 format, you can then generate your SQL query/queries related
to this span to send them to Vitess. To inform Vitess of the SpanContext, you need to use a special SQL comment style,

e.g.:
/*VT_SPAN_CONTEXT=<base64 value>*/ SELECT * from product;

There are additional notes here:

— The underlying tracing libraries are very particular about the base64 value, so if you have any formatting problems
(including trailing spaces between the base64 value and the closing of the comment); you will get many warnings in
your vtgate logs.

— When testing with, for example, the mysql CLI tool, make sure you are using the —c (or --comments flag), since the
default is —-skip-comments, which will never send your comments to the server (vtgate).

Inspecting trace spans in the Jaeger web UI This is beyond the scope of this guide. However, in general, if you have
set everything above up correctly and you have instrumented and executed some queries appropriately, you can now access the
Jager web UI to look at the spans recorded. If you are using the local docker container version of Jaeger, you can access the web
UI in your browser at http://localhost:16686/.

You should be able to search for and find spans based on the trace-id or span-id with which your query/queries were
instrumented. Once you find a query, you will be able to see the trace events emitted by different parts of the code as the query
moves through vtgate and the vttablet(s) involved in the query. An example would look something like this:

260

https://www.jaegertracing.io/docs/1.19/client-libraries/#tracespan-identity

& C @ localhost:16686/trace/7224839¢11ae4810

Jaeger Ul _ Search Compare System Architecture About Jaeger v

¢ v vtgate: vigateHandler.ComQuery 8 Trace Timeline ~

October 11 2020, 13:22:56 4.44ms 2 10 13

Service & Operation /> ¥ » 0ms 1.11ms 2.22ms 3.33ms 4.44ms
v vigate
v vigate
v vigate
~ || vitablet
~ || vitablet Tablet
~ | vitablet T
vitablet
~ | vitablet
~ | vitablet
~ | vitablet
vitablet
~ | vitablet

vitablet

Unmanaged Tablet

{{< info >}} This guide follows on from the local installation guide. {{< /info >}}

This guide uses the Vitess components vtctld, Topology Service and VTGate which have already been started in the local
installation guide. It assumes that you have an existing MySQL Server setup that you would like to add to Vitess as a new

keyspace, which we will call legacy. The same set of steps can be used to create a tablet that uses Amazon RDS, Aurora, or
Google CloudSQL.

Ensure all components are up

You should have previously executed ./101_initial_cluster.sh in the get-started guide. This will ensure that you have a
Topology Service, vtgate, vtctld. For the unmanaged MySQL instance, I will be using an instance running on 127.0.0.1:5726:

source env.sh

verify vtgate/vitess is up and TUNNING
mysql commerce -e 'show tables'

verify my unmanaged mysql is rTunning
mysql -h 127.0.0.1 -P 5726 -umsandbox -pmsandbox legacy -e 'show tables'

Output:

~/vitess/examples/local$ source env.sh

~/vitess/examples/local$

~/vitess/examples/local$ # verify vtgate/vitess is up and running
~/vitess/examples/local$ mysql commerce -e 'show tables'

B T +
| Tables_in_vt_commerce |
- +
| corder

| customer |
| product |
e +

~/vitess/examples/local$ # verify my unmanaged mysql is running

261

~/vitess/examples/local$ mysql -h 127.0.0.1 -P 5726 -umsandbox -pmsandbox legacy -e 'show
tables'
mysql: [Warning] Using a password on the command line interface can be insecure.

Start a tablet to correspond to legacy

The variables TOPOLOGY_FLAGS and VTDATAROOT should already be in the environment from sourcing env.sh earlier. We will call
the new tablet UID 401.

mkdir -p $VTDATAROOT/vt_0000000401

vttablet \

$TOPOLOGY_FLAGS \

-logtostderr \

-log_queries_to_file $VTDATAROOT/tmp/vttablet_0000000401_querylog.txt \
-tablet-path "zonel-0000000401" \

-init_keyspace legacy \

-init_shard 0 \

-init_tablet_type replica \

-port 15401 \

-grpc_port 16401 \

-service_map 'grpc-queryservice,grpc-tabletmanager ,grpc-updatestream' \
-pid_file $VTDATAROOT/vt_0000000401/vttablet.pid \
-vtctld_addr http://localhost:15000/ \

-db_host 127.0.0.1 \

-db_port 5726 \

-db_app_user msandbox \

-db_app_password msandbox \

-db_dba_user msandbox \

-db_dba_password msandbox \

-db_repl_user msandbox \

-db_repl_password msandbox \

-db_filtered_user msandbox \

-db_filtered_password msandbox \

-db_allprivs_user msandbox \

-db_allprivs_password msandbox \
-init_db_name_override legacy \
-init_populate_metadata &

You should be able to see debug information written to screen confirming Vitess can reach the unmanaged server. A common
problem is that you may need to change the authentication plugin to mysql_native_password (MySQL 8.0).

Assuming that there are no errors, after a few seconds you can mark the server as externally promoted to master:

vtctlclient TabletExternallyReparented zonel-401

Connect via VT Gate

VTGate should now be able to route queries to your unmanaged MySQL server:

~/vitess/examples/local$ mysql legacy -e 'show tables'

262

| Tables_in_legacy |

You can even join between the unmanaged tablet and the managed tablets. Vitess will execute the query as a scatter-gather:
mysql> use commerce;

Database changed

mysql> select corder.order_id from corder inner join legacy.legacytable on
corder.order_id=legacy.legacytable.id;
Empty set (0.01 sec)

Move legacytable to the commerce keyspace

Move the table:

vtctlclient MoveTables -tablet_types=master -workflow=legacy2commerce legacy commerce
'{"legacytable": {}}'

Switch reads:

vtctlclient SwitchReads -tablet_type=rdonly commerce.legacy2commerce

vtctlclient SwitchReads -tablet_type=replica commerce.legacy2commerce

Switch writes:

vtctlclient SwitchWrites commerce.legacy2commerce

Drop source table:

vtctlclient DropSources commerce.legacy2commerce

Verify that the table was moved:
source env.sh

verify vtgate/vitess ts up and running
mysql commerce -e 'show tables'

verify my unmanaged mysql is Tunning
mysql -h 127.0.0.1 -P 5726 -umsandbox -pmsandbox legacy -e 'show tables'

Output:

~/vitess/examples/local$ source env.sh

~/vitess/examples/local$

~/vitess/examples/local$ # verify vtgate/vitess is up and running
~/vitess/examples/local$ mysql commerce -e 'show tables'

e +
| corder

| customer |
| legacytable

| product |
e +

~/vitess/examples/local$ # verify my unmanaged mysql is running

263

~/vitess/examples/local$ mysql -h 127.0.0.1 -P 5726 -umsandbox -pmsandbox legacy -e 'show
tables'
mysql: [Warning] Using a password on the command line interface can be insecure.

User Management and Authentication

Vitess uses its own mechanism for managing users and their permissions through VT Gate. As a result, the CREATE USER.. ..
and GRANT. .. statements will not work if sent through VTGate.

Authentication
The Vitess VT Gate component takes care of authentication for requests so we will need to add any users that should have access
to the Keyspaces via the command-line options to VT Gate.

The simplest way to configure users is using a static auth method and we can define the users in a JSON formatted file or
string.

$ cat > users.json << EOF

{
"vitess": [
{
"UserData": "vitess",
"Password": "supersecretpassword"
¥
1,
"myuserl": [
{
"UserData": "myuserl",
"Password": "passwordl"
¥
1,
"myuser2": [
{
"UserData": "myuser2",
"Password": "password2"
X
]
}
EOF

Then we can load this into VT'Gate with the additional commandline parameters:

vtgate $(cat <<END_OF_COMMAND
-mysql_auth_server_impl=static
-mysql_auth_server_static_file=users. json

END_OF _COMMAND
)

Now we can test our new users:

$ mysql -h 127.0.0.1 -u myuserl -ppasswordl -e "select 1"
+-——+

[1 |
+-——+

264

[1 |
+-——+

$ mysql -h 127.0.0.1 -u myuserl -pincorrect_password -e "select 1"
ERROR 1045 (28000): Access denied for user 'myuserl'

Password format

In the above example we used plaintext passwords. Vitess supports the MySQL mysql native password hash format, and
you should always specify your passwords using this in a non-test or external environment. Vitess does not yet support the
caching sha2_password format that became the default for MySQL in 8.0.

To use a mysql_native_password hash, your user section in your static JSON authentication file would look something like this
instead:

{
"vitess": [
{
"UserData": "vitess",
"MysqlNativePassword": "*9E128DA0C64A6FCCCDCFBDDOFCOA2C967C6DB36F "
+
]
}

You can extract a mysql_native_password hash from an existing MySQL install by looking at the authentication_string
column of the relevant user’s row in the mysql.user table. An alternate way to generate this hash is to SHA1 the cleartext
password string twice, e.g. doing it in MySQL for the cleartext password password:

mysql> SELECT UPPER(SHA1 (UNHEX (SHA1 ("password")))) as hash;

e +
| hash |
T e +
| 2470COCO6DEE42FD1618BB99005ADCA2EC9D1E19 |
B +

1 row in set (0.01 sec)

So, you would use *2470COCO6DEE42FD1618BB99005ADCA2ECID1ELY as the MysqlNativePassword hash value for the cleartext
password password.

UserData

In the static authentication JSON file, the UserData string is not the username; the username is the string key for the list. The
UserData string does not need to correspond to the username, and is used by the authorization mechanism when referring to a
user. It is usually however simpler if you make the UserData string and the username the same.

The UserData feature can be leveraged to create multiple users that are equivalent to the authorization layer (i.e. multiple users
having the same UserData strings), but are different in the authentication layer (i.e. have different usernames and passwords).

Multiple passwords

A very convenient feature of the VT'Gate authorization is that, as can be seen in the example JSON authentication files, you
have a list of UserData and Password/MysqlNativePassword pairs associated with a user. You can optionally leverage this
to assign multiple different passwords to a single user, and VT Gate will allow a user to authenticate with any of the defined
passwords. This makes password rotation much easier; and less likely to require or cause downtime.

An example could be:

265

https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html

"vitess": [
{
"UserData": "vitess_old",
"MysqlNativePassword": "*9E128DA0C64A6FCCCDCFBDDOFCOA2C967C6DB36F"
i
{
"UserData": "vitess_new",
"MysqlNativePassword": "*B3AD996B12F211BEA47A7C666CC136FB26DCOGAF"
}
]

}

This feature also allows different UserData strings to be associated with a user depending on the password used. This can be
used in concert with the authorization mechanism to migrate an application gracefully from one set of ACLs (or no ACLs) to
another set of ACLs, by just changing the password used by the application.

In the example above, the username vitess has two different passwords that would be allowed, each resulting in different
UserData strings (vitess_old or vitess_new) being passed to the VTTablet layer that can be used for authorization/ACL
enforcement.

Other authentication methods

Other than the static authentication file method above, other authentication mechanisms are also provided: * LDAP-based
authentication * TLS client certificate-based authentication

Configuration
description: User guides covering basic configuration concepts

Configuring Components
Managed MySQL

The following describes the requirements for Vitess when fully managing MySQL with mysqlctl (see VI Tablet Modes).
When using Unmanaged or Remote MySQL instead, the requirement is only that the server speak the MySQL protocol.

Version and Flavor mysqlctl supports MySQL/Percona Server 5.6 to 8.0, and MariaDB 10.0 to 10.3. MariaDB 10.4 is
currently known to have installation issues (#5362).

Base Configuration Starting with Vitess 4.0, mysqlctl will auto-detect the version and flavor of MySQL you are using, and
automatically-include a base configuration file in config/mycnf/*.

Auto-dection works by searching for mysqld in the $PATH, as well as in the environment variable $VT_MYSQL_ROOT. If auto-
detection fails, mysqlctl will apply version detection based on the $MYSQL_FLAVOR environment variable. Auto-detection will
always take precedence over $MYSQL_FLAVOR.

Specifying Additional Configuration The automatically-included base configuration makes only the required settings
changes for Vitess to operate correctly. It is recommended to configure InnoDB settings such as innodb_buffer_pool_size and
innodb_log_file_size according to your available system resources.

mysqlctl will not read configuration files from common locations such as /etc/my.cnf or /etc/mysql/my.cnf. To include a
custom my . cnf file as part of the initialization of tablets, set the $EXTRA_MY_CNF environment variable to a list of colon-separated
files. Each file must be an absolute path.

266

https://github.com/vitessio/vitess/issues/5362

In Kubernetes, you can use a ConfigMap to overwrite the entire $VTRO0T/config/mycnf directory with your custom versions,
rather than baking them into a custom container image.

Unsupported Configuration Changes When specifying additional configuration changes to Vitess, please keep in mind
that changing the following settings is unsupported:

Setting Reason

auto_commit MySQL autocommit needs to be turned on.
VTTablet uses connection pools to MySQL. If
autocommit is turned off, MySQL will start an
implicit transaction (with a point in time snapshot)
for each connection and will work very hard at
keeping the current view unchanged, which would
be counter-productive.

log-bin Several Vitess features rely on the binary log being
enabled.

binlog-format Vitess only supports row-based replication. Do not
change this setting from the included configuration
files.

binlog-row-image Vitess only supports the default value (FULL)

log-slave-updates Vitess requires this setting enabled, as it is in the
included configuration files.

character-set* Vitess only supports ut£8 (and variants such as
utf8mb4)

gtid-mode Vitess relies on GTIDs to track changes to topology.

gtid-strict-mode/enforce-gtid-consistency Vitess requires this setting to be unchanged.

sql-mode Vitess can operate with non-default SQL modes,

but VTGate will not allow you to change the
sql-mode on a per-session basis. This can create
compatibility issues for applications that require
changes to this setting.

init_ db.sql When a new instance is initialized with mysqlctl init (as opposed to restarting in a previously initialized data dir
with mysqlctl start), the init_db.sql file is applied to the server immediately after running the bootstrap procedure (either
mysqld --initialize-insecure or mysql_install_db, depending on the MySQL version). This file is also responsible for
removing unprivileged users, as well as adding the necessary tables and grants for Vitess.

Note that changes to this file will not be reflected in shards that have already been initialized and had at least one backup taken.
New instances in such shards will automatically restore the latest backup upon vttablet startup, overwriting the data dir created
by mysqlctl.

Vitess Servers

Logging Vitess servers write to log files, and they are rotated when they reach a maximum size. It’s recommended that you
run at INFO level logging. The information printed in the log files come in handy for troubleshooting. You can limit the disk
usage by running cron jobs that periodically purge or archive them.

Vitess supports both MySQL protocol and gRPC for communication between client and Vitess and uses gRPC for communication
between Vitess servers. By default, Vitess does not use SSL.

Also, even without using SSL, we allow the use of an application-provided CallerID object. It allows unsecured but easy to use
authorization using Table ACLs.

See the TLS example for more information on how to set up both of these features, and what command line parameters exist.

267

https://github.com/aquarapid/vitess_examples/blob/master/tls/securing_vitess.md

Topology Service configuration Vttablet, vtgate and vtctld need the right command line parameters to find the topology
service. First the topo_implementation flag needs to be set to one of zk2, etcd2, or consul. Then they’re all configured as
follows:

o The topo_global_server_address contains the server address / addresses of the global topology service.
o The topo_global_root contains the directory / path to use.

Note that the local cell for the tablet must exist and be configured properly in the Topology Service for vttablet to start.
Local cells are configured inside the topology service, by using the vtctl AddCellInfo command. See the Topology Service
documentation for more information.

VTTablet

VTTablet has a large number of command line options. Some important ones will be covered here. In terms of provisioning
these are the recommended values

e 2-4 cores (in proportion to MySQL cores)
e 2-4 GB RAM

Directory Configuration vttablet supports a number of command line options and environment variables to facilitate its
setup.

The VTDATAROOT environment variable specifies the toplevel directory for all data files. If not set, it defaults to /vt.

By default, a vttablet will use a subdirectory in VIDATAROOT named vt_ NNNNNNNNNN where NNNNNNNNNN is the
tablet id. The tablet_ dir command-line parameter allows overriding this relative path. This is useful in containers where the
filesystem only contains one vttablet, in order to have a fixed root directory.

When starting up and using mysqlctl to manage MySQL, the MySQL files will be in subdirectories of the tablet root. For
instance, bin-logs for the binary logs, data for the data files, and relay-logs for the relay logs.

It is possible to host different parts of a MySQL server files on different partitions. For instance, the data file may reside in
flash, while the bin logs and relay logs are on spindle. To achieve this, create a symlink from $VTDATAROOT/<dir name> to
the proper location on disk. When MySQL is configured by mysqlctl, it will realize this directory exists, and use it for the files
it would otherwise have put in the tablet directory. For instance, to host the binlogs in /mnt/bin-logs:

o Create a symlink from $VTDATAROOT /bin-logs to /mnt/bin-logs.
o When starting up a tablet: * /mnt/bin-logs/vt_ NNNNNNNNNN will be created. * §VTDATAROOT /vt_ NNNNNNNNNN /bin-
logs will be a symlink to /mnt/bin-logs/vt NNNNNNNNNN

Initialization

o Init_keyspace, init_ shard, init_ tablet_ type: These parameters should be set at startup with the keyspace / shard / tablet
type to start the tablet as. Note ‘master’ is not allowed here, instead use ‘replica’, as the tablet when starting will figure
out if it is the master (this way, all replica tablets start with the same command line parameters, independently of which
one is the master).

Query server parameters

e queryserver-config-pool-size: This value should typically be set to the max number of simultaneous queries you want
MySQL to run. This should typically be around 2-3x the number of allocated CPUs. Around 4-16. There is not much
harm in going higher with this value, but you may see no additional benefits.

e queryserver-config-stream-pool-size: This value is relevant only if you plan to run streaming queries against the
database. It’s recommended that you use rdonly instances for such streaming queries. This value depends on how many
simultaneous streaming queries you plan to run. Typical values are in the low 100s.

268

e queryserver-config-transaction-cap: This value should be set to how many concurrent transactions you wish to allow.
This should be a function of transaction QPS and transaction length. Typical values are in the low 100s.

¢ queryserver-config-query-timeout: This value should be set to the upper limit you're willing to allow a query to run
before it’s deemed too expensive or detrimental to the rest of the system. VTTablet will kill any query that exceeds this
timeout. This value is usually around 15-30s.

e queryserver-config-transaction-timeout: This value is meant to protect the situation where a client has crashed
without completing a transaction. Typical value for this timeout is 30s.

e queryserver-config-max-result-size: This parameter prevents the OLTP application from accidentally requesting too
many rows. If the result exceeds the specified number of rows, VT Tablet returns an error. The default value is 10,000.

DB config parameters VTTablet requires multiple user credentials to perform its tasks. Since it’s required to run on the
same machine as MySQL, it’s most beneficial to use the more efficient unix socket connections.

connection parameters

e db_socket: The unix socket to connect on. If this is specified, host and port will not be used.
e db_host: The host name for the tcp connection.

e db_port: The tcp port to be used with the db_host.

e db_charset: Character set. Only utf8 or latinl based character sets are supported.

e db_flags: Flag values as defined by MySQL.

e db_ssl_ca, db_ssl_ca_path, db_ssl_cert, db_ssl_key: SSL flags.

app credentials are for serving app queries:

e db_app_user: App username.

e db_app_password: Password for the app username. If you need a more secure way of managing and supplying passwords,
VTTablet does allow you to plug into a “password server” that can securely supply and refresh usernames and passwords.
Please contact the Vitess team for help if you’d like to write such a custom plugin.

o db_app_use_ssl: Set this flag to false if you don’t want to use SSL for this connection. This will allow you to turn off
SSL for all users except for repl, which may have to be turned on for replication that goes over open networks.

appdebug credentials are for the appdebug user:

e db_appdebug_user
e db_appdebug_password
¢ db_appdebug_use_ssl

dba credentials will be used for housekeeping work like loading the schema or killing runaway queries:

e db_dba_user
e db_dba_password
e db_dba_use_ssl

repl credentials are for managing replication.

e db_repl_user
e db_repl_password
e db_repl_use_ssl

filtered credentials are for performing resharding:

e db_filtered_user
e db_filtered_password
e db_filtered_use_ssl

269

Monitoring VTTablet exports a wealth of real-time information about itself. This section will explain the essential ones:

/debug/status This page has a variety of human-readable information about the current VI Tablet. You can look at this
page to get a general overview of what’s going on. It also has links to various other diagnostic URLs below.

/debug/vars This is the most important source of information for monitoring. There are other URLSs below that can be used
to further drill down.

Queries (as described in /debug/vars section) Vitess has a structured way of exporting certain performance stats. The
most common one is the Histogram structure, which is used by Queries:

"Queries": {
"Histograms": {

"PASS\ _SELECT": {
"1000000": 1138196,
"10000000": 1138313,
"100000000": 1138342,
"1000000000": 1138342,
"10000000000": 1138342,
"500000": 1133195,
"5000000": 1138277,
"50000000": 1138342,
"500000000": 1138342,
"5000000000": 1138342,
"Count": 1138342,
"Time": 387710449887,
"inf": 1138342

}

Iy

"TotalCount": 1138342,

"TotalTime": 387710449887
¥

The histograms are broken out into query categories. In the above case, “PASS_SELECT” is the only category. An entry like
"500000": 1133195 means that 1133195 queries took under 500000 nanoseconds to execute.
Queries.Histograms.PASS_SELECT.Count is the total count in the PASS_SELECT category.
Queries.Histograms.PASS_SELECT.Time is the total time in the PASS_SELECT category.

Queries.TotalCount is the total count across all categories.

Queries.TotalTime is the total time across all categories.

There are other Histogram variables described below, and they will always have the same structure.

Use this variable to track:

L] QPS

o Latency

e Per-category QPS. For replicas, the only category will be PASS SELECT, but there will be more for masters.
e Per-category latency

e Per-category tail latency

"Results": {
"O": O,
|I1||: O,

270

"10": 1138326,
"100": 1138326,
"1000": 1138342,
"10000": 1138342,
"5":. 1138326,
"50": 1138326,
"500": 1138342,
"5000": 1138342,
"Count": 1138342,
"Total": 1140438,
"inf": 1138342

}

Results is a simple histogram with no timing info. It gives you a histogram view of the number of rows returned per query.

Mysql Mysql is a histogram variable like Queries, except that it reports MySQL execution times. The categories are “Exec”
and “ExecStream”.

In the past, the exec time difference between VT Tablet and MySQL used to be substantial. With the newer versions of Go, the
VTTablet exec time has been predominantly been equal to the mysql exec time, conn pool wait time and consolidations waits.
In other words, this variable has not shown much value recently. However, it’s good to track this variable initially, until it’s
determined that there are no other factors causing a big difference between MySQL performance and VT Tablet performance.

Transactions Transactions is a histogram variable that tracks transactions. The categories are “Completed” and “Aborted”.

Waits Waits is a histogram variable that tracks various waits in the system. Right now, the only category is “Consolidations”.
A consolidation happens when one query waits for the results of an identical query already executing, thereby saving the database
from performing duplicate work.

This variable used to report connection pool waits, but a refactor moved those variables out into the pool related vars.

"Errors": {
"Deadlock": O,
"Fail": 1,

"NotInTx": O,
"TxPoolFull": O
},

Errors are reported under different categories. It’s beneficial to track each category separately as it will be more helpful for
troubleshooting. Right now, there are four categories. The category list may vary as Vitess evolves.
Plotting errors/query can sometimes be useful for troubleshooting.

VTTablet also exports an InfoErrors variable that tracks inconsequential errors that don’t signify any kind of problem with the
system. For example, a dup key on insert is considered normal because apps tend to use that error to instead update an existing
row. So, no monitoring is needed for that variable.

"InternalErrors": {
"HungQuery": O,
"Invalidation": O,
"MemcacheStats": O,

"Mismatch": O,

271

"Panic": O,
"Schema": O,
"StrayTransactions": O,
"Task": O

},

An internal error is an unexpected situation in code that may possibly point to a bug. Such errors may not cause outages, but
even a single error needs be escalated for root cause analysis.

"Kills": {
"Queries": 2,
"Transactions": O

},

Kills reports the queries and transactions killed by VTTablet due to timeout. It’s a very important variable to look at during
outages.

TransactionPool* There are a few variables with the above prefix:

"TransactionPoolAvailable": 300,
"TransactionPoolCapacity": 300,
"TransactionPoolIdleTimeout": 600000000000,
"TransactionPoolMaxCap": 300,
"TransactionPoolTimeout": 30000000000,
"TransactionPoolWaitCount": O,
"TransactionPoolWaitTime": O,

e WaitCount will give you how often the transaction pool gets full that causes new transactions to wait.

o WaitTime/WaitCount will tell you the average wait time.

e Available is a gauge that tells you the number of available connections in the pool in real-time. Capacity-Available is
the number of connections in use. Note that this number could be misleading if the traffic is spiky.

Other Pool variables Just like TransactionPool, there are variables for other pools:

e ConnPool: This is the pool used for read traffic.
e StreamConnPool: This is the pool used for streaming queries.

There are other internal pools used by VTTablet that are not very consequential.

TableACLAllowed, TableACLDenied, TableACLPseudoDenied The above three variables table acl stats broken out by table,
plan and user.

QueryPlanCacheSize If the application does not make good use of bind variables, this value would reach the QueryCacheCa-
pacity. If so, inspecting the current query cache will give you a clue about where the misuse is happening.

QueryCounts, QueryErrorCounts, QueryRowCounts, QueryTimesNs These variables are another multi-dimensional view of
Queries. They have a lot more data than Queries because they’re broken out into tables as well as plan. This is a priceless
source of information when it comes to troubleshooting. If an outage is related to rogue queries, the graphs plotted from these
vars will immediately show the table on which such queries are run. After that, a quick look at the detailed query stats will
most likely identify the culprit.

272

UserTableQueryCount, UserTableQueryTimesNs, UserTransactionCount, UserTransactionTimesNs These variables are yet
another view of Queries, but broken out by user, table and plan. If you have well-compartmentalized app users, this is another
priceless way of identifying a rogue “user app” that could be misbehaving.

DataFree, Datalength, IndexLength, TableRows These variables are updated periodically from information_ schema.tables.
They represent statistical information as reported by MySQL about each table. They can be used for planning purposes, or to
track unusual changes in table stats.

e DataFree represents data_free

o Datalength represents data_length

e IndexLength represents index_length
e TableRows represents table_rows

/debug/health This URL prints out a simple “ok” or “not ok” string that can be used to check if the server is healthy. The
health check makes sure mysqld connections work, and replication is configured (though not necessarily running) if not master.

/queryz, /debug/query_ stats, /debug/query_ plans, /streamqueryz

o /debug/query_ stats is a JSON view of the per-query stats. This information is pulled in real-time from the query cache.
The per-table stats in /debug/vars are a roll-up of this information.

e /queryz is a human-readable version of /debug/query_stats. If a graph shows a table as a possible source of problems,
this is the next place to look at to see if a specific query is the root cause.

o /debug/query_ plans is a more static view of the query cache. It just shows how VTTablet will process or rewrite the input
query.

o /streamqueryz lists the currently running streaming queries. You have the option to kill any of them from this page.

/querylogz, /debug/querylog, /txlogz, /debug/txlog

o /debug/querylog is a never-ending stream of currently executing queries with verbose information about each query. This
URL can generate a lot of data because it streams every query processed by VT Tablet. The details are as per this function:
https://github.com/vitessio/vitess/blob/master/go/vt/tabletserver/logstats.go#1.202

e /querylogz is a limited human readable version of /debug/querylog. It prints the next 300 queries by default. The limit
can be specified with a limit=N parameter on the URL.

o /txlogz is like /querylogz, but for transactions.

o /debug/txlog is the JSON counterpart to /txlogz.

/consolidations This URL has an MRU list of consolidations. This is a way of identifying if multiple clients are spamming
the same query to a server.

/schemaz, /debug/schema

o /schemaz shows the schema info loaded by VTTablet.
o /debug/schema is the JSON version of /schemaz.

/debug/query_ rules This URL displays the currently active query blacklist rules.

273

Alerting Alerting is built on top of the variables you monitor. Before setting up alerts, you should get some baseline stats
and variance, and then you can build meaningful alerting rules. You can use the following list as a guideline to build your own:

e Query latency among all vttablets
o Per keyspace latency

o Errors/query

e Memory usage

e Unbhealthy for too long

e Too many vttablets down

e Health has been flapping

e Transaction pool full error rate

e Any internal error

o Traffic out of balance among replicas
o Qps/core too high

VTGate
A typical VT Gate should be provisioned as follows.

e 2-4 cores
¢ 2-4 GB RAM

Since VT Gate is stateless, you can scale it linearly by just adding more servers as needed. Beyond the recommended values, it’s
better to add more VT Gates than giving more resources to existing servers, as recommended in the philosophy section.

Load-balancer in front of vtgate to scale up (not covered by Vitess). Stateless, can use the health URL for health check.

Parameters Some of the important VI'Gate and VT Tablet flags for modifying query serving behavior:

VTGate: * cells_to_watch: which cell vtgate is in and will monitor tablets from. Cross-cell master access needs multiple
cells here. * tablet_types_to_wait: VTGate waits for at least one serving tablet per tablet type specified here during
startup, before listening to the serving port, so that VI'Gate does not start up serving errors. It should match a subset of
the available tablet types VTGate connects to (master, replica, rdonly). The default is empty, i.e. VT Gate will not wait
for any serving tablets to start listening. * discovery_low_replication_lag (default: 30s): when replication lags of all
VTTablet instances in a particular shard and of a specific tablet type are less than or equal this value, VI'Gate does not
filter the tablets by replication lag and uses all to balance traffic. * discovery_high replication_lag minimum_serving
(default: 2h): the replication lag that is considered too high when applying the min_number_serving_vttablets threshold
* min_number_serving_vttablets (default: 2): when replication lag exceeds discovery_low_replication_lag, but not
discovery_high_replication_lag_minimum_serving, keep serving from at least this many replica tablets per shard. This
threshold also applies separately to the minimum number of serving rdonly tablets per shard. * transaction_mode (default:
multi): default write transaction mode to allow: * single: disallow multi-db transactions * multi: allow multi-db transactions
with best effort commit * twopc: allow multi-db transactions with 2pc commit.

Note that transaction_mode does not affect read-only transactions. * normalize_queries (default: true): Turning this

flag on will cause vtgate to rewrite queries with bind vars. This is beneficial if the app doesn’t itself send normalized queries.

VTTablet: * unhealthy_threshold (default: 2h): areplicating tablet (e.g. tablet type replica or rdonly) will publish itself as
unhealthy if replication lag exceeds this threshold. * degraded_threshold (30s): a replicating tablet (e.g. tablet type replica
or rdonly) will publish itself as degraded if replication lag exceeds this threshold. This will cause VT'Gates to choose more
up-to-date servers over this one. If all servers are degraded, VT Gate resorts to serving from all of them. Also note the potential
impact of the -min_number_serving_vttablets above.

Monitoring

/debug/status This is the landing page for a VT Gate, which gives you the status of how a particular server is doing. Of
particular interest there is the list of tablets this vtgate process is connected to, as this is the list of tablets that can potentially
serve queries.

274

/debug/vars VTGateApi

This is the main histogram variable to track for vtgates. It gives you a break up of all queries by command, keyspace, and type.
HealthcheckConnections

It shows the number of tablet connections for query/healthcheck per keyspace, shard, and tablet type.

/debug/query_ plans

This URL gives you all the query plans for queries going through VT Gate.

/debug/vschema

This URL shows the vschema as loaded by VT Gate.

Alerting For VTGate, here’s a list of possible variables to alert on:

o Error rate

o Error/query rate

 Error/query/tablet-type rate

o VTGate serving graph is stale by x minutes (topology service is down)
e Qps/core

o Latency

Exporting data from Vitess

Since VT Gate supports the MySQL protocol, in many cases it is possible to use existing client utilities when connecting to
Vitess. This includes using logical dump tools such as mysqldump, in certain cases.

This guide provides instructions on the required options when using these tools against a VT Gate server for the purposes of
exporting data from Vitess. It is recommended to follow the Backup and Restore guide for regular backups, since this method is
performed directly on the tablet servers and is more efficient and safer for databases of any significant size. The dump methods
that follow are typically not suitable for production backups, because Vitess does not implement all the locking constructs across
a sharded database that are necessary to do a consistent logical backup while writing to the database. As a result, you will only
be guaranteed to get a 100% consistent dump using these tools if you are sure that you are not writing to the database while
running the dump.

mysqldump The default invocation of mysqldump attempts to execute statements which are not supported by Vitess, such as
attempting to lock tables and dump GTID coordinates. The following options are required when using the mysqldump binary
from MySQL 5.7 to export data from the commerce keyspace:

e —-lock-tables=off: VT Gate currently prohibits the syntax LOCK TABLES and UNLOCK TABLES.

e —-set-gtid-purged=0FF: mysqldump attemps to dump GTID coordinates of a server, but in the case of VT'Gate this does
not make sense since it could be routing to multiple servers.

e —-no-tablespaces: This option disables dumping InnoDB tables by tablespace. This functionality is not yet supported
by Vitess.

o --skip-network-timeout: This option is required when using mysqldump from MySQL 8.0 (#5401) with Vitess versions
before 7.0.

For example to export the commerce keyspace using the mysqldump binary from MySQL 5.7:
$ mysqldump --lock-tables=off --set-gtid-purged=0FF --no-tablespaces commerce >

commerce.sql

NOTE: You will be limited by the Vitess row limits in the size of the tables that you can dump using this method. The default
Vitess row limit is determined by the VTTablet option -queryserver-config-max-result-size and defaults to 10000 rows.
So for an unsharded database, you will not be able to dump tables with more than 10000 rows, or N x 10000 rows if the table

275

https://github.com/vitessio/vitess/issues/5401

is fully sharded across N shards. Note that you should not blindly raise your row limits just because of this, it is an important
Vitess operability and reliability feature. If you have large tables to dump, look into using go-mydumper instead.

To restore dump files created by mysqldump, replay it against a Vitess server or other MySQL server using the mysql command
line client.

go-mydumper Alternatively, you can use a slight modification of the go-mydumper tool to export logical dumps of a Vitess
keyspace. go-mydumper has the advantage of being multi-threaded, and so can run faster on a database that has many tables.
For a database with just one or a handful of large tables, go-mydumper may not be that much faster than mysqldump.

For information on the Vitess-compatible fork of go-mydumper, see https://github.com/aquarapid/go-mydumper . Examples
and instructions are available in the README.md in that repo. You will need to be able to compile golang binaries to use this
tool.

go-mydumper creates multiple files for each backup. To restore a backup, you can use the mysql commandline client, but using
the myloader tool as described in the go-mydumper repo above is easier and can be faster, since the loader is also multithreaded.

Production Planning
Provisioning

Minimum Topology A highly available Vitess cluster requires the following components:

e 2 VTGate Servers

o A redundant Topology Service (e.g. 3 etcd servers)

e 3 MySQL Servers with semi-sync replication enabled
e 3 VTTablet processes

e A Vtctld process

It is common practice to locate the VT Tablet process and MySQL Servers on the same host, and Vitess uses the terminology
tablet to refer to both. The topology service in Vitess is pluggable, and you can use an existing etcd, ZooKeeper or Consul
cluster to reduce the footprint required to deploy Vitess.

For development environments, it is possible to deploy with a lower number of these components. See 101_initial_cluster.sh
from the Run Vitess Locally guide for an example.

General Recommendations Vitess components (excluding the mysqld server) tend to be CPU-bound processes. They use
disk space for storing their logs, but do not store any intermediate results on disk, and tend not to be disk IO bound. It is
recommended to allocate 2-4 CPU cores for each VT'Gate server, and the same number of cores for VITablet as with mysqld.
If you are provisioning for a new workload, we recommend projecting that mysqld will require 1 core per 1500 QPS. Workloads
with well optimized queries should be able to achieve greater than this.

The memory requirements for VI'Gate and VTTablet servers will depend on QPS and result set sizes, but a typical rule of
thumb is to provision a baseline of 1GB per core.

The impact of network latency can be a factor when migrating from MySQL to Vitess. A simple rule of thumb is to estimate
2ms of round trip latency added to each query. Application code paths that make large numbers of database round-trips in a
sequential code path will be most affected. To compensate, you may have to optimize or parallelize some code paths; or run
additional threads or workers, which may result in additional memory requirements.

Planning Shard Size Vitess recommends provisioning shard sizes to approximately 250GB. This is not a hard-limit, and
is driven primarily by the recovery time should an instance fail. With 250GB a full-recovery from backup is expected within
less than 15 minutes. For most workloads this results in shards instances with relatively few CPU cores and lighter memory
requirements, which tend to be more economical than running large instance sizes.

276

https://github.com/aquarapid/go-mydumper/blob/jacques_vitess/README.md

Running Multiple Tablets Per Server If you are using physical servers, Vitess encourages running multiple tablets (shards)
per server. Typically the best way to do this is with Kubernetes, but mysqlctl also supports launching and managing multiple
tablet servers if required.

Assuming tablets are kept to the recommended size of 250GB, they can start with a baseline CPU requirement of 2-4 cores for
mysqld plus 2-4 cores for the VT Tablet process, but this is obviously very workload-dependent.

Topology Service Provisioning By design, Vitess tries to contact the topology service as little as possible, and stores very
little data in the topology server. For estimating CPU/memory/disk requirements, you can use the minimum requirements
recommended by your preferred Topology Service.

Production testing

Before running Vitess in production, you should become comfortable with the different administrative operations. We recommend
to go through the following scenarios on a non-production system.

Here is a short list of all the basic workflows Vitess supports:

o Reparenting

o Backup/Restore

e Schema Management

o Resharding / Horizontal Sharding Tutorial
o Upgrading

Legacy
description: User guides for features in older version of Vitess

Horizontal Sharding

{{< warning >}} In Vitess 6, Horizontal Sharding became obsolete with the introduction of Resharding! It is recommended to
skip this guide, and continue on with the resharding user guide instead. {{< /warning >}}

{{< info >}} This guide follows on from Vertical Split and Get Started with a Local deployment. It assumes that several scripts
have been executed, and that you have a running Vitess cluster. {{< /info >}}

The DBAs you hired with massive troves of hipster cash are pinging you on Slack and are freaking out. With the amount of data
that you're loading up in your keyspaces, MySQL performance is starting to tank - it’s okay, you’re prepared for this! Although
the query guardrails and connection pooling are cool features that Vitess can offer to a single unsharded keyspace, the real value
comes into play with horizontal sharding.

Preparation

Before starting the resharding process, you need to make some decisions and prepare the system for horizontal resharding.
Important note, this is something that should have been done before starting the vertical split. However, this is a good time to
explain what normally would have been decided upon earlier the process.

Sequences The first issue to address is the fact that customer and corder have auto-increment columns. This scheme does
not work well in a sharded setup. Instead, Vitess provides an equivalent feature through sequences.

The sequence table is an unsharded single row table that Vitess can use to generate monotonically increasing ids. The syntax
to generate an id is: select next :n values from customer_seq. The vttablet that exposes this table is capable of serving
a very large number of such ids because values are cached and served out of memory. The cache value is configurable.

277

The VSchema allows you to associate a column of a table with the sequence table. Once this is done, an insert on that table
transparently fetches an id from the sequence table, fills in the value, and routes the row to the appropriate shard. This makes
the construct backward compatible to how MySQL’s auto_increment property works.

Since sequences are unsharded tables, they will be stored in the commerce database. The schema:

CREATE TABLE customer_seq (id int, next_id bigint, cache bigint, primary key(id)) comment
'vitess_sequence';

INSERT INTO customer_seq (id, next_id, cache) VALUES (0, 1000, 100);

CREATE TABLE order_seq (id int, next_id bigint, cache bigint, primary key(id)) comment
'vitess_sequence';

INSERT INTO order_seq (id, next_id, cache) VALUES (0, 1000, 100);

Note the vitess_sequence comment in the create table statement. VTTablet will use this metadata to treat this table as a
sequence.

e id is always 0
e next_id is set to 1000: the value should be comfortably greater than the auto_increment max value used so far.
e cache specifies the number of values to cache before vttablet updates next_id.

Larger cache values perform better, but will exhaust the values quicker since during reparent operations the new master will
start off at the next_id value.

The VTGate servers also need to know about the sequence tables. This is done by updating the VSchema for commerce as
follows:

{
"tables": {
"customer_seq": {
"type": "sequence"
T,
"order_seq": {
"type": "sequence"
s
"product": {}
}
}

Vindexes The next decision is about the sharding keys, aka Primary Vindexes. This is a complex decision that involves the
following considerations:

e What are the highest QPS queries, and what are the where clauses for them?
o Cardinality of the column; it must be high.

e Do we want some rows to live together to support in-shard joins?

e Do we want certain rows that will be in the same transaction to live together?

Using the above considerations, in our use case, we can determine that:

e For the customer table, the most common where clause uses customer_id. So, it shall have a Primary Vindex.

o Given that it has lots of users, its cardinality is also high.

e For the corder table, we have a choice between customer_id and order_id. Given that our app joins customer with
corder quite often on the customer_id column, it will be beneficial to choose customer_id as the Primary Vindex for the
corder table as well.

¢ Coincidentally, transactions also update corder tables with their corresponding customer rows. This further reinforces
the decision to use customer_id as Primary Vindex.

278

NOTE: It may be worth creating a secondary lookup Vindex on corder.order_id. This is not part of the example. We will
discuss this in the advanced section.

NOTE: For some use cases, customer_id may actually map to a tenant_id. In such cases, the cardinality of a tenant id may be
too low. It’s also common that such systems have queries that use other high cardinality columns in their where clauses. Those
should then be taken into consideration when deciding on a good Primary Vindex.

Putting it all together, we have the following VSchema for customer:

{
"sharded": true,
"vindexes": {
"hash": {
"type": "hash"
}
},
"tables": {
"customer": {
"column_vindexes": [
{
"column": "customer_id",
"name": "hash"
}
i
"auto_increment": {
"column": "customer_id",
"sequence": "customer_seq"
}
I
"corder": {
"column_vindexes": [
{
"column": "customer_id",
"name": "hash"
}
e
"auto_increment": {
"column": "order_id",
"sequence": "order_seq"
}
}
}
}

Note that we have now marked the keyspace as sharded. Making this change will also change how Vitess treats this keyspace.
Some complex queries that previously worked may not work anymore. This is a good time to conduct thorough testing to ensure
that all the queries work. If any queries fail, you can temporarily revert the keyspace as unsharded. You can go back and forth
until you have got all the queries working again.

Since the primary vindex columns are BIGINT, we choose hash as the primary vindex, which is a pseudo-random way of
distributing rows into various shards.

NOTE: For VARCHAR columns, use unicode_loose_md5 or unicode_loose_xxhash. For VARBINARY, use binary_md5 or xxhash.

NOTE: All vindexes in Vitess are plugins. If none of the predefined vindexes suit your needs, you can develop your own custom
vindex.

Now that we have made all the important decisions, it’s time to apply these changes:

./301 _customer_sharded.sh

279

Create new shards

At this point, you have finalized your sharded VSchema and vetted all the queries to make sure they still work. Now, it’s time
to reshard.

The resharding process works by splitting existing shards into smaller shards. This type of resharding is the most appropriate
for Vitess. There are some use cases where you may want to spin up a new shard and add new rows in the most recently created
shard. This can be achieved in Vitess by splitting a shard in such a way that no rows end up in the ‘new’ shard. However, it’s
not natural for Vitess.

We have to create the new target shards:
./302_new_shards.sh

Shard 0 was already there. We have now added shards -80 and 80-. We’ve also added the CopySchema directive which requests
that the schema from shard 0 be copied into the new shards.

Shard naming What is the meaning of -80 and 80-7 The shard names have the following characteristics:

e They represent a range, where the left number is included, but the right is not.
e Their notation is hexadecimal.

e They are left justified.

e A - prefix means: anything less than the RHS value.

e A - postfix means: anything greater than or equal to the LHS value.

e A plain - denotes the full keyrange.

What does this mean: -80 == 00-80 == 0000-8000 == 000000-800000
80- is not the same as 80-FF. This is why:

80-FF == 8000-FF00. Therefore FFFF will be out of the 80-FF range.
80- means: ‘anything greater than or equal to 0x80

A hash vindex produces an 8-byte number. This means that all numbers less than 0x8000000000000000 will fall in shard -80.
Any number with the highest bit set will be >= 0x8000000000000000, and will therefore belong to shard 80-.

This left-justified approach allows you to have keyspace ids of arbitrary length. However, the most significant bits are the ones
on the left.

For example an md5 hash produces 16 bytes. That can also be used as a keyspace id.
A varbinary of arbitrary length can also be mapped as is to a keyspace id. This is what the binary vindex does.

In the above case, we are essentially creating two shards: any keyspace id that does not have its leftmost bit set will go to -80.
All others will go to 80-.

Applying the above change should result in the creation of six more vttablet instances.
At this point, the tables have been created in the new shards but have no data yet.

mysql --table < ../common/select_customer-80_data.sql
Using customer/-80

Customer

COrder

mysql --table < ../common/select_customer80-_data.sql
Using customer/80-

Customer

COrder

280

SplitClone

The process for SplitClone is similar to VerticalSplitClone. It starts the horizontal resharding process:

./303_horizontal_split.sh

This starts the following job “SplitClone -min_ healthy rdonly_tablets=1 customer/0”:

For large tables, this job could potentially run for many days, and can be restarted if failed. This job performs the following
tasks:

o Dirty copy data from customer/0 into the two new shards. But rows are split based on their target shards.

 Stop replication on customer/0 rdonly tablet and perform a final sync.

o Start a filtered replication process from customer/0 into the two shards by sending changes to one or the other shard
depending on which shard the rows belong to.

Once SplitClone has completed, you should see this:

The horizontal counterpart to VerticalSplitDiff is SplitDiff. It can be used to validate the data integrity of the resharding
process “SplitDiff -min_healthy_rdonly tablets=1 customer/-80”:

NOTE: This example does not actually run this command.

Note that the last argument of SplitDiff is the target (smaller) shard. You will need to run one job for each target shard. Also,
you cannot run them in parallel because they need to take an rdonly instance offline to perform the comparison.

NOTE: SplitDiff can be used to split shards as well as to merge them.

Cut over

Now that you have verified that the tables are being continuously updated from the source shard, you can cutover the traffic.
This is typically performed in three steps: rdonly, replica and master:

For rdonly and replica:

./304 _migrate_replicas.sh

For master:

./305 _migrate_master.sh

During the master migration, the original shard master will first stop accepting updates. Then the process will wait for the new
shard masters to fully catch up on filtered replication before allowing them to begin serving. Since filtered replication has been
following along with live updates, there should only be a few seconds of master unavailability.

The replica and rdonly cutovers are freely reversible. Unlike the Vertical Split, a horizontal split is also reversible. You just have
to add a -reverse_replication flag while cutting over the master. This flag causes the entire resharding process to run in the
opposite direction, allowing you to Migrate in the other direction if the need arises.

You should now be able to see the data that has been copied over to the new shards.

mysql --table < ../common/select_customer -80_data.sql
Using customer/-80
Customer

+
| customer_id |
fommmmmmem e e +
| alice@domain.com
| bob@domain.com
| charlie@domain.com
| eve@domain.com
+

281

COrder

tomm fommm tomm to———— - +
| order_id | customer_id | sku | price |
tomm - fommmmmm - tommm - to———— - +
1	1	SKU-1001	100
2	2	SKU-1002	30
3	3	SKU-1002	30
5	5	SKU-1002	30
tomm fommmmmm tomm to—————- +

mysql --table < ../common/select_customer80-_data.sql
Using customer/80-

Customer

Fomm - Fmmm e +

| customer_id | email

dommm - e +

| 4 | dan@domain.com |

Fmmm Fmmm e +

COrder

domm——————— domm R to——— +
| order_id | customer_id | sku | price |
R e e O +
| 4 | 4 | SKU-1002 | 30 |
domm domm domm - R +
Clean up

After celebrating your second successful resharding, you are now ready to clean up the leftover artifacts:
./306 _down_shard_0.sh
In this script, we just stopped all tablet instances for shard 0. This will cause all those vttablet and mysqld processes to be

stopped. But the shard metadata is still present. We can clean that up with this command (after all vttablets have been brought
down):

./307 delete_shard_0.sh

This command runs the following “DeleteShard -recursive customer/0”.

Beyond this, you will also need to manually delete the disk associated with this shard.

Next Steps

Feel free to experiment with your Vitess cluster! Execute the following when you are ready to teardown your example:

./401_teardown.sh

Vertical Split

{{< warning >}} In Vitess 6, Vertical Split became obsolete with the introduction of MoveTables! It is recommended to skip
this guide, and continue on with the MoveTables user guide instead. {{< /warning >}}

{{< info >}} This guide follows on from get started with a local deployment. It assumes that the ./101_initial_cluster.sh
script has been executed, and that you have a running Vitess cluster. {{< /info >}}

Vertical Split enables you to move a subset of tables to their own keyspace. Continuing on from the ecommerce example started
in the get started guide, as your database continues to grow, you may decide to separate the customer and corder tables from
the product table. Let us add some data into our tables to illustrate how the vertical split works. Paste the following:

282

mysql < ../common/insert_commerce_data.sql

We can look at what we just inserted:

mysql --table < ../common/select_commerce_data.sql
Using commerce/0

Customer

B e - +

| customer_id | email

o e +

| 1 | alice@domain.com |

| 2 | bob@domain.com |

| 3 | charlie@domain.com |

| 4 | dan@domain.com |

| 5 | eve@domain.com |
e e +

Product

R Fmm - o ———— +

| sku | description | price |

B e Fmm————— +

| SKU-1001 | Monitor | 100 |

| SKU-1002 | Keyboard | 30 |

B Fmmm - o ———— +

COrder

B o o Fmm————— +
| order_id | customer_id | sku | price |
Fmmm - Fmmm - Fmm - Fmm———— +
| 1| 1 | SKU-1001 | 100 |
I 2 | 2 | SKU-1002 | 30 |
I 31 3 | SKU-1002 | 30 |
| 4 | 4 | SKU-1002 | 30 |
| 5 | 5 | SKU-1002 | 30 |
tmmm————— - Fmmm tmm - tm————— +

Notice that we are using keyspace commerce/0 to select data from our tables.

Create Keyspace

For a vertical split, we first need to create a special served_from keyspace. This keyspace starts off as an alias for the commerce
keyspace. Any queries sent to this keyspace will be redirected to commerce. Once this is created, we can vertically split tables
into the new keyspace without having to make the app aware of this change:

./201 _customer_keyspace.sh

This creates an entry into the topology indicating that any requests to master, replica, or rdonly sent to customer must be
redirected to (served from) commerce. These tablet type specific redirects will be used to control how we transition the cutover
from commerce to customer.

Customer Tablets

Now you have to create vttablet instances to back this new keyspace onto which you’ll move the necessary tables:

./202 _customer_tablets.sh

The most significant change, this script makes is the instantiation of vttablets for the new keyspace. Additionally:

e You moved customer and corder from the commerce’s VSchema to customer’s VSchema. Note that the physical tables are
still in commerce.

283

e You requested that the schema for customer and corder be copied to customer using the copySchema directive.

The move in the VSchema should not make a difference yet because any queries sent to customer are still redirected to commerce,
where all the data is still present.

VerticalSplitClone

The next step:
./203 _vertical_split.sh

starts the process of migrating the data from commerce to customer.

For large tables, this job could potentially run for many days, and may be restarted if failed. This job performs the following
tasks:

o Dirty copy data from commerce’s customer and corder tables to customer’s tables.

e Stop replication on commerce’s rdonly tablet and perform a final sync.

e Start a filtered replication process from commerce->customer that keeps the customer’s tables in sync with those in
commerce.

NOTE: In production, you would want to run multiple sanity checks on the replication by running SplitDiff jobs multiple
times before starting the cutover.

We can look at the results of VerticalSplitClone by examining the data in the customer keyspace. Notice that all data in the
customer and corder tables has been copied over.

mysql --table < ../common/select_customer0O_data.sql
Using customer/0

Customer

o fmmm e +

| customer_id | email

o - o +

| 1 | alice@domain.com |

| 2 | bob@domain.com |

| 3 | charlie@domain.com |

| 4 | dan@domain.com |

| 5 | eve@domain.com |
o - o +

COrder

e - S e - FR +
| order_id | customer_id | sku | price |
o o o ——— R +
I 1 1 | SKU-1001 | 100 |
I 2 | 2 | SKU-1002 | 30 |
I 3 | 3 | SKU-1002 | 30 |
I 4 | 4 | SKU-1002 | 30 |
I 5 | 5 | SKU-1002 | 30 |
Fmm o o o +
Cut over

Once you have verified that the customer and corder tables are being continuously updated from commerce, you can cutover
the traffic. This is typically performed in three steps: rdonly, replica and master:

For rdonly and replica:

284

./204 _vertical _migrate_replicas.sh

For master:

./205_vertical_migrate_master.sh

Once this is done, the customer and corder tables are no longer accessible in the commerce keyspace. You can verify this by
trying to read from them.

mysql --table < ../common/select_commerce_data.sql

Using commerce/0

Customer

ERROR 1105 (HY000) at line 4: vtgate: http://vtgate-zonel-5ff9c47db6-7rmld:15001/: target:
commerce .0.master, used tablet: zonel-1564760600 (zonel-commerce-O-replica-0.vttablet),
vttablet: rpc error: code = FailedPrecondition desc = disallowed due to rule: enforce
blacklisted tables (CallerID: userDatal)

The replica and rdonly cutovers are freely reversible. However, the master cutover is one-way and cannot be reversed. This is a
limitation of vertical resharding, which will be resolved in the near future. For now, care should be taken so that no loss of data
or availability occurs after the cutover completes.

Clean up

After celebrating your first successful ‘vertical resharding’, you will need to clean up the leftover artifacts:

./206 _clean_commerce.sh

Those tables are now being served from customer. So, they can be dropped from commerce.

The ‘control’ records were added by the MigrateServedFrom command during the cutover to prevent the commerce tables from
accidentally accepting writes. They can now be removed.

After this step, the customer and corder tables no longer exist in the commerce keyspace.

mysql --table < ../common/select_commerce_data.sql

Using commerce/0

Customer

ERROR 1105 (HY000) at line 4: vtgate: http://vtgate-zonel-5ff9c47db6-7rmld:15001/: target:
commerce .0.master, used tablet: zonel-1564760600 (zonel-commerce-O-replica-0.vttablet),
vttablet: rpc error: code = InvalidArgument desc = table customer not found in schema
(CallerID: userDatal)

Next Steps

You can now proceed with Horizontal Sharding.
Or alternatively, if you would like to teardown your example:

./401_teardown.sh

Migration
description: User guides covering migration to Vitess

Materialize

{{< info >}} This guide follows on from the Get Started guides. Please make sure that you have an Operator, local or Helm
installation ready. Make sure you have only run the “101” step of the examples, for example 101_initial_cluster.sh in the

285

local example. The commands in this guide also assumes you have setup the shell aliases from the example, e.g. env.sh in the
local example. {{< /info >}}

Materialize is a new VReplication workflow in Vitess 6. It can be used as a more general way to achieve something similar
to MoveTables, or as a way to generate materialized views of a table (or set of tables) in the same or different keyspace from
the source table (or set of tables). In general, it can be used to create and maintain continually updated materialized views in
Vitess, without having to resort to manual or trigger-based population of the view content.

Since Materialize uses VReplication, the view can be kept up-to-date very close to real-time, which enables use-cases like
creating copies of the same table sharded different ways for the purposes of certain types of queries that would otherwise be
prohibitively expensive on the original table. Materialize is also flexible enough to allow for you to pre-create the schema and
vschema for the copied table, allowing you to, for example, maintain a copy of a table without some of the source table’s MySQL
indexes. Alternatively, you could use Materialize to do certain schema changes (e.g. change the type of a table column) without
having to use other tools like gh-ost.

In our example, we will be using Materialize to perform something similar to the MoveTables user guide, which will cover just
the basics of what is possible using Materialize.

Let’s start by simulating this situation by loading sample data:

mysql < ../common/insert_commerce_data.sql

We can look at what we just inserted:

On helm and local installs:

mysql --table < ../common/select_commerce_data.sql
With operator:
mysgql --table < select_commerce_data.sql

Using commerce/0

Customer

o - fmmm e +

| customer_id | email

o - o +

| 1 | alice@domain.com |

| 2 | bob@domain.com |

| 3 | charlie@domain.com |

| 4 | dan@domain.com |

| 5 | eve@domain.com |
o - T +

Product

fommme— - e o +

| sku | description | price |
o o o —— +

| SKU-1001 | Monitor | 100 |

| SKU-1002 | Keyboard | 30 |
fommmm— - e o +

COrder

o o o ——— o —— +
| order_id | customer_id | sku | price |
o o Fmm Fm———— +
| 1 1 | SKU-1001 | 100 |
I 2 | 2 | SKU-1002 | 30 |
I 31 3 | SKU-1002 | 30 |
I 4 | 4 | SKU-1002 | 30 |
I 5 | 5 | SKU-1002 | 30 |
Fmm e fmm fmm———— +

Note that we are using keyspace commerce/0 to select data from our tables

286

https://github.com/github/gh-ost

Planning to use Materialize

In this scenario, we are going to make two copies of the corder table in the same keyspace using a different tablenames of
corder_view and corder_view_redacted. The first copy will be identical to the source table, but for the corder_view_redacted
copy, we will use the opportunity to drop the price column from the copy. Since we are doing the Materialize to the same
keyspace, we do not need to create a new keyspace or tablets as we did for the MoveTables user guide.

Create the destination tables

In the case where we using Materialize to copy tables between keyspaces, we can use the "create_ddl": "copy" option in
the Materialize json_spec table_settings to create the target table for us (similar to what MoveTables does). However, in
our case where we are using Materialize with a target table name different from the source table name, we need to manually
create the target tables. Let’s go ahead and do that:

$ mysql -A
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> CREATE TABLE ~“corder_view (
“order_id~ bigint NOT NULL,
“customer_id~ bigint DEFAULT NULL,
“sku® varbinary(128) DEFAULT NULL,
“price” bigint DEFAULT NULL,
PRIMARY KEY (" order_id)

) ENGINE=InnoDB;

Query 0K, 0 rows affected (0.13 sec)

mysql> CREATE TABLE ~“corder_view_redacted ™ (
“order_id"~ bigint NOT NULL,
“customer_id~ bigint DEFAULT NULL,
“sku” varbinary(128) DEFAULT NULL,
PRIMARY KEY (order_id ™)
) ENGINE=InnoDB;
Query 0K, O rows affected (0.09 sec)

Now we need to make sure Vitess’ view of our schema is up-to-date:

$ vtctlclient ReloadSchemaKeyspace commerce

And now we can proceed to the Materialize step(s).

Start the Materialize (first copy)

We will run two Materialize operations, one for each copy/view of the corder table we will be creating. We could combine
these two operations into a single Materialize operation, but we will keep them separate for clarity.

$ vtctlclient Materialize '{"workflow": "copy_corder_1", "source_keyspace": "commerce",
"target_keyspace": "commerce", "table_settings": [{"target_table": "corder_view",
"source_expression": "select * from corder"}]}'

Now, we should see the materialized view table corder_view:

$ echo "select * from corder_view;" | mysql --table commerce
o —— o —— o —— +o—— - +
| order_id | customer_id | sku | price |
S e e e e +o—————— +

287

1	1	SKU-1001	100
2	2	SKU-1002	30
3	3	SKU-1002	30
4	4	SKU-1002	30
5	5	SKU-1002	30
o o ————— o - +

And if we insert a row into the source table, it will be replicated to the materialized view:

$ echo "insert into corder (order_id, customer_id, sku, price) values (6, 6, 'SKU-1002',

30);" | mysql commerce
$ echo "select * from corder_view;" | mysql --table commerce
tomm - fommm tomm - to———— - +
| order_id | customer_id | sku | price |
tomm fommmmmm tomm - to—————- +
1	1	SKU-1001	100
2	2	SKU-1002	30
3	3	SKU-1002	30
4	4	SKU-1002	30
5	5	SKU-1002	30
6	6	SKU-1002	30
fommm - fommmmmm e fommm o tomm - +

Note that the target table is just a normal table, there is nothing that prevents you from writing to it directly. While you might
not want to do that in this “view” use-case, in certain other use-cases, it might be completely acceptable to write to the table,
as long as you don’t end up altering or removing rows in a fashion that would break the “replication” part of VReplication
(e.g. removing a row in the target table directly that is later updated in the source table).

Viewing the workflow while in progress

While we can also see and manipulate the underlying VReplication streams created by Materialize; there are commands to show,
stop, start and delete the operations associated with a Materialize workflow. For example, once we have started the Materialize
command above, we can observe the status of the VReplication stream doing the materialization via the vtctlclient Workflow
command:

$ vtctlclient Workflow commerce.copy_corder_1 show

{
"Workflow": "copy_corder_1",
"SourceLocation": {
"Keyspace": "commerce",
"Shards": [
lloll
]
Iy
"TargetLocation": {
"Keyspace": "commerce",
"Shards": [
IIOII
]
Iy

"MaxVReplicationLag": 1599019410,
"ShardStatuses": {
"0/zonel-0000000100": {

"MasterReplicationStatuses": [
{
lIShardll: |IOII s
"Tablet": "zonel-0000000100",

288

"ID": 4,

"Bls": {
"keyspace": "commerce",
n Shardll . lloll ,
"filter": {
"rules": [
{
"match": "corder_view",
"filter": "select * from corder"
X
]
}
},
"Pos": "MySQL56/c0d82d27-ecd0-11ea-9840-001e677affd5:1-97978",
"StopPos": "",
"State": "Copying",
"MaxReplicationLag": 9223372036854775807,
"DBName": "vt_commerce",
"TransactionTimestamp": O,
"TimeUpdated": 1599019408,
"Message": "",
"CopyState": [
{
"Table": "corder_view",
"LastPK": "fields:<name:\"order_id\" type:INT64 >
rows:<lengths:5 values:\"37014\" >"
}
]
by
1,
"TabletControls": null,
"MasterIsServing": true

}

Note the state of Copying, this will transition to Running when the bulk copying of rows is complete.
We can now also use the stop/start commands to temporarily stop the materialization workflow. E.g. stop:

$ vtctlclient Workflow commerce.copy_corder_1 stop

e fmm +
| Tablet | RowsAffected |
T Fmmm e +
| zonel-0000000100 | 1|
o dmmmm e +

And start to start the workflow again and continue the materialization:

$ vtctlclient Workflow commerce.copy_corder_1 start

o mmmmmmmmem e e +
| Tablet | RowsAffected |
o o +
| zonel1-0000000100 | 1 |
T Fommm e +

Eventually, when the copy is done, or we have materialized the data, and do not want to continue the copy of new source rows,
we can delete the workflow via:

289

$ vtctlclient Workflow commerce.copy_corder_1 delete

e ————— e — e fhm——————————e = +
| Tablet | RowsAffected |
e ————— e — e fhm———— e +
| zonel-0000000100 | 1 |
T T fhem—ome e +

Note that deleting the workflow will not drop the target table for the Materialize workflow, or any of the data already copied.
The data in the target table will remain as it was at the moment the workflow was deleted (or previously stopped).

Start the Materialize (redacted copy)

Now, we can perform the copy to the corder_view_redacted table we created earlier. Note that we created this table without
a price column; we will not be copying that column.

$ vtctlclient Materialize '{"workflow": "copy_corder_2", "source_keyspace": "commerce",
"target_keyspace": "commerce", "table_settings": [{"target_table":
"corder_view_redacted", "source_expression": "select order_id, customer_id, sku from
corder"}]1}'

Again, looking the target table will show all the source table rows, this time without the sku column:

$ echo "select * from corder_view_redacted;" | mysql --table commerce
Fommmm - fom e bt +
| order_id | customer_id | sku |
e ettt e s o +
I 1 1 | SKU-1001 |
2	2	SKU-1002
3	3	SKU-1002
4	4	SKU-1002
5	5	SKU-1002
I 6 | 6 | SKU-1002 |
o ——— o ——— o ———— +

Again, we can add a row to the source table, and see it replicated into the target table:

$ echo "insert into corder (order_id, customer_id, sku, price) values (7, 7, 'SKU-1002',
30);" | mysql commerce
$ echo "select * from corder_view_redacted;" | mysql --table commerce

SKU-1001 |
SKU-1002 |
SKU-1002 |
SKU-1002 |
SKU-1002 |
SKU-1002 |
SKU-1002 |

What happened under the covers

As with MoveTables, a VReplication stream was formed for each of the Materialize workflows we executed. We can see these
by inspecting the VReplication table on the target keyspace master tablet, e.g. in this case:

290

$ vtctlclient VReplicationExec zonel-0000000100 'select * from _vt.vreplication'

et e Fm - Fmm
[id | workflow I source
pos | stop_pos | max_tps | max_replication_lag |
cell | tablet_types | time_updated | transaction_timestamp | state | message |
db_name |
e e Fm - Fmm
| 1 | copy_corder_1 | keyspace:"commerce" shard:"O0"
MySQL56/00a04e3a-e74d-11ea-a8c9-001e677affd5:1-926 | | 9223372036854775807 |
9223372036854775807 | I I 1598416592 | 1598416591 |
Running | | vt_commerce |

| | | filter:<rules:<match:"corder_view"
| | |
| | I |
I I
| filter:"select * from corder" > >

| 2 | copy_corder_2 | keyspace:"commerce" shard:"O"
MySQL56/00a04e3a-e74d-11ea-a8c9-001e677affd5:1-926 | | 9223372036854775807 |
9223372036854775807 | I I 1598416592 | 1598416591 |
Running | | vt_commerce |

| | | filter:<rules:<match:"corder view_redacted" |
| | I
I | I I |
| I
| filter:"select order_id, customer_id, sku |
| | |
| | I | |
I I

| from corder" > >

It is important to use the vtctlclient VReplicationExec command to inspect this table, since some of the fields are binary
and might not render properly in a MySQL client (at least with default options). In the above output, you can see a summary
of the VReplication streams that were setup (and are still Running) to copy and then do continuous replication of the source
table (corder) to the two different target tables.

Cleanup

As seen earlier, you can easily use the vtctlclient Workflow ... delete command to clean up a materialize operation. If you
like, you can also instead use the VReplicationExec command to temporarily stop the replication streams for the VReplication
streams that make up the Materialize process. For example, to stop both streams, you can do:

$ vtctlclient VReplicationExec zonel-0000000100 'update _vt.vreplication set state =
"Stopped" where id in (1,2)'

+

$ vtctlclient VReplicationExec zonel-0000000100 'select * from _vt.vreplication'

| id | workflow | source

291

max_replication_lag | cell | tablet_types | time_updated | transaction_timestamp |

state | message | db_name |
Fomm e m o et ittt P
| 1 | copy_corder_1 | keyspace:"commerce" shard:"O"
MySQL56/00a04e3a-e74d-11ea-a8c9-001e677affd5:1-1218 | | 9223372036854775807 |
9223372036854775807 | | | 1598416861 | 1598416859 |
Stopped | | vt_commerce |

| | | filter:<rules:<match:"corder view"
I I I
I I I |
| I
| filter:"select * from corder" > >

| 2 | copy_corder_2 | keyspace:"commerce" shard:"0"
MySQL56/00a04e3a-e74d-11ea-a8c9-001e677affd5:1-1218 | | 9223372036854775807 |
9223372036854775807 | | | 1598416861 | 1598416859 |
Stopped | | vt_commerce |

		filter:<rules:<match:"corder_view_redacted"	
filter:"select order_id, customer_id, sku			

| from corder" > > |

Any changes to the source tables will now not be applied to the target tables until you update the state column back to Running.

Lastly, you can clean up the Materialize process by just using VReplicationExec to delete the rows in the _vt.vreplication
table. This will do the necessary runtime cleanup as well. E.g.:

$ vtctlclient VReplicationExec zonel-0000000100 'delete from _vt.vreplication where id in

(1,2)!
+
+
$ vtctlclient VReplicationExec zonel-0000000100 'select * from _vt.vreplication'
domm—pmmm tomm - +-———- tomm - e Fommmm e +-————= fommmm e +-
| id | workflow | source | pos | stop_pos | max_tps | max_replication_lag | cell |
tablet_types | time_updated | transaction_timestamp | state | message | db_name |
domm b m Fo———— +-———- tomm————— Fomm—— Fmm t-————- Fommmm - +-
domm—pmmm fo———— - e fomm - tomm——— - Fmmm e +-————- Fommmm o +-

Note that this just cleans up the VReplication streams; the actual source and target tables are left untouched and in the same
state they were at the moment the VReplication streams were stopped or deleted.

Recap

As mentioned at the beginning, Materialize gives you finer control over the VReplication process without having to form VRepli-
cation rules completely by hand. For the ultimate flexibility, that is still possible, but you should be able to use Materialize
together with other Vitess features like routing rules to cover a large set of potential migration and data maintenance use-cases
without resorting to creating VReplication rules directly.

292

Migrating data into Vitess

Introduction

There are two main parts to migrating your data to Vitess: migrating the actual data and repointing the application. The
answer here will focus primarily on the methods that can be used to migrate your data into Vitess.

Overview

There are three different methods to migrate your data into Vitess. Choosing the appropriate option depends on several factors.
1. The nature of the application accessing the MySQL database 1. The size of the MySQL database to be migrated 1. The load,
especially the write load, on the MySQL database 1. Your tolerance for downtime during the migration of data 1. Whether you
require the ability to reverse the migration if needed 1. The network level configuration of your components

The three different methods are:

e ‘Stop-the-world’
e VReplication from Vitess setup in front of the existing external MySQL database
e Application-level migration

Method 1: “Stop-the-world”:

The simplest method to migrate data is to do a ‘dump and restore’ or ‘stop-the-world’. We recommend using ‘go-mydumper’.
To execute this method you would follow these steps: 1. Stop writing to the source MySQL database 1. Take a logical dump
of the database using go-mydumper or possibly mysqldump 1. Apply some simple transformations on the output 1. Import the
data into Vitess via the frontend 1. Repoint your application to the new database

1. Resume writing to the new database in Vitess

This method is only suitable for migrating small or non-critical databases that can tolerate downtime. The database will be
unavailable for writes between the time the dump is started and the time the restore of the dump is completed. For databases
of 10’s of GB and up this process could take hours or even days. The amount of downtime scales with the amount of data being
migrated.

Please note the ‘dump and restore’ method likely isn’t viable for most production applications, unless the applicable downtime
can be handled.

Method 2: VReplication from Vitess setup in front of the existing external MySQL database

A set of Vitess components will be created, on a temporary basis, to run in front of the source MySQL database in order to
migrate the data. These components should reference at least one of the replicas, in addition to the master, of the MySQL
database. The Vitess components can be run on bare metal, in a VM, or potentially even in Kubernetes.

It is important to note that the Vitess components must be reachable over a network by Vitess’s backend systems. Your topology
must be set up such that the source database is reachable from your vitess cluster. Similarly, all the VT Tablets being configured
for migration must be set up to run against your database within the same Vitess cluster.

Vitess offers a choice of two VReplication commands to perform the data migration process described above: MoveTables or
Materialize.

Both methods use a combination of transactional SELECTs and filtered MySQL replication to copy each of the tables in the
source database to Vitess. Once all the data is copied, the two databases are kept in sync using the replication stream from the
source database. While in this synchronized state, you can verify the source and destination are in sync, and testing on the copy
of the data in Vitess can commence.

Once the testing has completed, application traffic can be removed from the source MySQL database and switched to the Vitess
database. For this switch, a small amount of downtime will be necessary. This downtime could be seconds or minutes, depending
on the application and application automation.

293

https://github.com/aquarapid/go-mydumper

There are some differences between MoveTables and Materialize that you will need to evaluate to determine which process to
use:

Materialize: This process works well if you want to get data out as purely a copy or you want to transform the
data during the copying process

o Has more flexibility because you can transform the data while you are migrating it. E.g. you can choose not to migrate
specific columns from a table

o It isn’t directly reversible. E.g. changes to the downstream Vitess copy of the data after the application cutover will not
flow back to the original source MySQL database

e Switching over application traffic is not integrated. You have to manually configure the commands in order to do the
switch over

MoveTables: This process works well if you want to have minimum downtime during the switch over and to be
able to reverse the switch over

e Switch reads and switch writes are integrated

o Allows the switch over to be reversible due to reverse replication. Writes to Vitess can be propagated back to the source
MySQL database after the copy

e Cannot transform the data during the migration. The assumption is that the entire dataset is being copied as is

Choosing the Right Method The first and most important point to consider when choosing the right method is whether
you can or cannot interconnect between components on your network. If you cannot, or do not wish to, perform extra steps to
ensure interconnectivity then you will need to use the ‘Stop-the-world” method.

If you can ensure interconnectivity and that the target VITablets are in the same Vitess cluster, then for cases when larger
amounts of downtime are not an option you will want to use VReplication with either MoveTables or Materialize.

Method 3: Application-level migration
In some cases it might be necessary to perform the data migration on an application level. Reasons for this might be things like:

e The source data is spread across a large set of MySQL databases, and is being consolidated as part of the migration process.
Thus it’s not possible to migrate data using only normal MySQL replication

e The source database systems are not running MySQL Row-Based Replication and it’s not possible, feasible, or practical
to convert them

e The source database system might not be MySQL, in which case a custom application-level migration will be necessary

In these cases custom tools must first be written on the application side to start writing data to both the legacy database and
Vitess. Secondly, the source data must be moved over in bulk to the Vitess database and then the switch over can be performed.

There are multiple options to do those steps, however we won’t go into detail as each situation for these cases is unique. A
summary of some potential options are:

“Stop the world”:

o Write application-level tools to export, import, and verify data between the source and destination systems.

Dual writes:

e Modify the application to start doing dual writes between the source and destination databases, while the application is
still pointing to the source database as the primary datastore.

e Create custom tools to backfill old data from the source to destination system. VReplication could be used to form a part
of this solution.

e Cut-over by having the application start to read, as well as write, from the destination Vitess database as the primary
data source. This option can be reversible, assuming the dual writes continue after the read cutover.

294

MoveTables

{{< info >}} This guide follows on from the Get Started guides. Please make sure that you have an Operator, local or
Helm installation ready after the 101_initial_cluster step, and making sure you have setup aliases and port-forwarding (if

necessary). {{< /info >}}

MoveTables is a new VReplication workflow in Vitess 6 and later, and obsoletes Vertical Split from earlier releases.

This feature enables you to move a subset of tables between keyspaces without downtime. For example, after Initially deploying
Vitess, your single commerce schema may grow so large that it needs to be split into multiple keyspaces.

As a stepping stone towards splitting a single table across multiple servers (sharding), it usually makes sense to first split from
having a single monolithic keyspace (commerce) to having multiple keyspaces (commerce and customer). For example, in our
hypothetical ecommerce system we may know that customer and corder tables are closely related and both growing quickly.

Let’s start by simulating this situation by loading sample data:

mysql <

We can look at what we just inserted:

On helm and local installs:
mysql --table <
With operator:
mysql --table < select_commerce_data.sql

../common/select_commerce_data.sql

Using commerce/0

customer

| SKU-1001
| SKU-1002

Notice that we are using keyspace commerce/0 to select data from our tables.

+ —— — — — + — +

+ —— — — — + — +

Monitor
Keyboard

alice@domain.com

bob@domain

charlie@domain.

dan@domain

eve@domain.

+ — — 4+ — 4+

+ — — — — — + — 4+

.com

|

|

com |
.com |
|

SKU-1001
SKU-1002
SKU-1002
SKU-1002
SKU-1002

+ — — — — — 4+ — +

../common/insert_commerce_data.sql

295

Planning to Move Tables

In this scenario, we are going to add the customer keyspace to the commerce keyspace we already have. This new keyspace will
be backed by its own set of mysqld instances. We will then move the tables customer and corder from the commerce keyspace
into the newly created customer. The product table will remain in the commerce keyspace. This operation happens online
which means that it does not block either read or write operations to the tables, except for a small window during the final
cut-over.

Show our current tablets

$ echo "show vitess_tablets;" | mysql --table
o fo————————- t——————- fo——————————— fo———————— fo————————m— - fo—————————- L R ——
| Cell | Keyspace | Shard | TabletType | State | Alias | Hostname |
MasterTermStartTime |
fm——— o — - o o o —— o fmm e
| zonel | commerce | O | MASTER | SERVING | zonel1-0000000100 | localhost |
2020-08-26T00:37:21Z |
| zonel | commerce | O | REPLICA | SERVING | zonel1-0000000101 | localhost |
|
| zonel | commerce | O | RDONLY | SERVING | zonel-0000000102 | localhost |
|
fmm———— T R B o Fmm Fmmm B T R

As can be seen, we have 3 tablets running, with tablet ids 100, 101 and 102; which we use in the examples to form the tablet
alias/names like zone1-0000000100, etc.

Create new tablets
The first step in our MoveTables operation is to deploy new tablets for our customer keyspace. By the convention used in our

examples, we are going to use the tablet ids 200-202 as the commerce keyspace previously used 100-102. Once the tablets have
started, we can force the first tablet to be the master using the InitShardMaster -force flag:

helm upgrade vitess ../../helm/vitess/ -f 201_customer_tablets.yaml

After a few minutes the pods should appear running;:

$ kubectl get pods, jobs

NAME READY STATUS RESTARTS AGE
pod/vtctld-58bd955948 -pgzT7k 1/1 Running 0 5m36s
pod/vtgate-zonel-c7444bbf6-t5xc6 1/1 Running 3 5m36s
pod/zonel-commerce-0-init-shard-master-gshz9 0/1 Completed 0 5m35s
pod/zonel-commerce-0-replica-0 2/2 Running 0 5m35s
pod/zonel-commerce-0O-replica-1 2/2 Running 0 5m35s
pod/zonel-commerce-0-replica-2 2/2 Running 0 5m35s
pod/zonel-customer-0-init-shard-master-7w7rm 0/1 Completed 0 84s
pod/zonel-customer-0-replica-0 2/2 Running 0 84s
pod/zonel-customer-O-replica-1 2/2 Running 0 84s
pod/zonel-customer-O-replica-2 2/2 Running 0 84s
NAME COMPLETIONS DURATION AGE
job.batch/zonel-commerce-0-init-shard-master 1/1 90s 5m36s
job.batch/zonel-customer-0-init-shard-master 1/1 23s 84s

InitShardMaster is performed implicitly by Helm for you.

296

kubectl apply -f 201_customer_tablets.yaml

After a few minutes the pods should appear running:

$ kubectl get pods

NAME

example-etcd-faf13de3-1
example-etcd-faf13de3-2
example-etcd-faf13de3-3

example-vttablet -zonel-1250593518-17c58396
example-vttablet -zonel-2469782763-bfadd780
example-vttablet-zonel-2548885007-46a852d0
example-vttablet -zonel -3778123133-6f4edbfc
example-zonel-vtctld-1d4dcad0-59d8498459-kdml8
example-zonel-vtgate-bc6cde92-6bd99c6888-csnkj
vitess-operator -8454d86687 -4wfnc

READY STATUS RESTARTS AGE

1/1 Running 0 8mils
1/1 Running 0 8mils
1/1 Running 0 8mlls
3/3 Running 1 2m20s
3/3 Running 1 Tmb57s
3/3 Running 1 Tmé47s
3/3 Running 1 2m20s
1/1 Running 1 8mils
1/1 Running 2 8mlls
1/1 Running 0 22m

Again, the operator will perform InitShardMaster implicitly for you.

Make sure that you restart the port-forward after launching the pods has completed:

killall kubectl
./pf.sh &

for i in 200 201 202; do

CELL=zonel TABLET_UID=$i ./scripts/mysqlctl-up.sh
CELL=zonel KEYSPACE=customer TABLET_UID=$i ./scripts/vttablet-up.sh

done

vtctlclient InitShardMaster -force customer/0 zonel-200

vtctlclient ReloadSchemaKeyspace customer

Show our old and new tablets

$ echo "show vitess_tablets;" | mysql --table
fm——— T fm——— o o ———
| Cell | Keyspace | Shard | TabletType | State
MasterTermStartTime |
o fommm— - fo————— o mm e fo————— -
| zonel | commerce | O | MASTER | SERVING
2020-08-26T00:37:21Z |
| zonel | commerce | O | REPLICA | SERVING
|
| zonel | commerce | O | RDONLY | SERVING
|
| zonel | customer | O | MASTER | SERVING
2020-08-26T00:52:39Z |
| zonel | customer | O | REPLICA | SERVING
|
| zonel | customer | O | RDONLY | SERVING
|
o o — - fm——— o o ———

297

—t e -

zonel -0000000100

zonel-0000000101

zonel -0000000102

zonel-0000000200

zonel-0000000201

zonel -0000000202

localhost |

localhost |

localhost |

localhost |

localhost |

localhost |

Note: The following change does not change actual routing yet. We will use a switch directive to achieve that shortly.

Start the Move

In this step we will initiate the MoveTables, which copies tables from the commerce keyspace into customer. This operation does
not block any database activity; the MoveTables operation is performed online:

$ vtctlclient MoveTables -workflow=commerce2customer commerce customer '{"customer":{},
"corder":{}}'
You can read this command as: “Start copying the tables called customer and corder from the commerce keyspace to the

customer keyspace.”

A few things to note:

o In a real-world situation this process might take hours/days to complete if the table has millions or billions of rows.
o The workflow name (commerce2customer in this case) is arbitrary, you can name it whatever you want. You will use this
handle/alias for the other MoveTables related commands like SwitchReads and SwitchWrites in the next steps.

Check routing rules (optional)

To see what happens under the covers, let’s look at the routing rules that the MoveTables operation created. These are
instructions used by VT'Gate to determine which backend keyspace to send requests for a given table or schema/table combo:

$ vtctlclient GetRoutingRules commerce

{
"rules": [
{
"fromTable": "customer",
"toTables": [
"commerce.customer"
]
},
{
"fromTable": "customer.customer",
"toTables": [
"commerce.customer"
1
},
{
"fromTable": "corder",
"toTables": [
"commerce.corder"
]
Iy
{
"fromTable": "customer.corder",
"toTables": [
"commerce.corder"
]
+
]
¥

298

Basically what the MoveTables operation has done is to create routing rules to explicitly route queries to the tables customer
and corder, as well as the schema/table combos of customer.customer and customer.corder to the respective tables in the
commerce keyspace. This is done so that when MoveTables creates the new copy of the tables in the customer keyspace, there
is no ambiguity about where to route requests for the customer and corder tables. All requests for those tables will keep going
to the original instance of those tables in commerce keyspace. Any changes to the tables after the MoveTables is executed will
be copied faithfully to the new copy of these tables in the customer keyspace.

Monitoring Progress (optional)

In this example there are only a few rows in the tables, so the MoveTables operation only takes seconds. If the tables were large,
you may need to monitor the progress of the operation. There is no simple way to get a percentage complete status, but you
can estimate the progress by running the following against the master tablet of the target keyspace:

$ vtctlclient VReplicationExec zonel-0000000200 "select * from _vt.copy_state"

In the above case the copy is already complete, but if it was still ongoing, there would be details about the last PK (primary
key) copied by the VReplication copy process. You could use information about the last copied PK along with the max PK and
data distribution of the source table to estimate progress.

Validate Correctness (optional)

We can use VDIiff to checksum the two sources and confirm they are in sync:

$ vtctlclient VDiff customer.commerce2customer

You should see output similar to the following:

Summary for corder: {ProcessedRows:5 MatchingRows:5 MismatchedRows:0 ExtraRowsSource:0
ExtraRowsTarget :0}

Summary for customer: {ProcessedRows:5 MatchingRows:5 MismatchedRows:0 ExtraRowsSource:0
ExtraRowsTarget :0}

This can obviously take a long time on very large tables.

Phase 1: Switch Reads

Once the MoveTables operation is complete, the first step in making the changes live is to switch SELECT statements to read
from the new keyspace. Other statements will continue to route to the commerce keyspace. By staging this as two operations,
Vitess allows you to test the changes and reduce the associated risks. For example, you may have a different configuration of
hardware or software on the new keyspace.

vtctlclient SwitchReads -tablet_type=rdonly customer.commerce2customer
vtctlclient SwitchReads -tablet_type=replica customer.commerce2customer

299

Interlude: check the routing rules (optional)

Lets look at what has happened to the routing rules since we checked the last time. The two SwitchReads commands above
added a number of new routing rules for the tables involved in the MoveTables operation/workflow, e.g.:

$ vtctlclient GetRoutingRules commerce

{
"rules": [
{
"fromTable": "commerce.corder@rdonly",
"toTables": [
"customer.corder"
]
I
{
"fromTable": "commerce.corder@replica",
"toTables": [
"customer.corder"
]
¥
{
"fromTable": "customer.customer@rdonly",
"toTables": [
"customer.customer"
]
s
{
"fromTable": "customer@rdonly",
"toTables": [
"customer.customer"
]
I
{
"fromTable": "commerce.customer@replica",
"toTables": [
"customer.customer"
]
I
{
"fromTable": "corder",
"toTables": [
"commerce.corder"
]
},
{
"fromTable": "customer.corder@replica",
"toTables": [
"customer.corder"
]
},
{
"fromTable": "customer.customer@replica',
"toTables": [
"customer.customer"
]
},
{

300

"fromTable": "customer.corder",
"toTables": [
"commerce.corder"

]
I
{
"fromTable": "corder@rdonly",
"toTables": [
"customer.corder"
]
Iy
{
"fromTable": "customer.corder@rdonly",
"toTables": [
"customer.corder"
]
},
{
"fromTable": "customer",
"toTables": [
"commerce.customer"
]
},
{
"fromTable": "customer.customer",
"toTables": [
"commerce.customer"
]
},
{
"fromTable": "commerce.customer@rdonly",
"toTables": [
"customer.customer"
1
},
{
"fromTable": "corder@replica",
"toTables": [
"customer.corder"
]
Iy
{
"fromTable": "customer@replica",
"toTables": [
"customer.customer"
]
}

}

As you can see, we now have requests to the rdonly and replica tablets for the source commerce keyspace being redirected to
the in-sync copy of the table in the target customer keyspace.

301

Phase 2: Switch Writes

After the reads have been switched, and you have verified that the system is operating as expected, it is time to switch the write
operations. The command to execute the switch is very similar to switching reads:

$ vtctlclient SwitchWrites customer.commerce2customer

Interlude: check the routing rules (optional)

Again, if we look at the routing rules after the SwitchWrites process, we will find that it has been cleaned up, and replaced
with a blanket redirect for the moved tables (customer and corder) from the source keyspace (commerce) to the target keyspace
(customer), e.g.:

$ vtctlclient GetRoutingRules commerce

{
"rules": [
{
"fromTable": "commerce.customer",
"toTables": [
"customer.customer"
]
},
{
"fromTable": "customer",
"toTables": [
"customer.customer"
]
},
{
"fromTable": "commerce.corder",
"toTables": [
"customer.corder"
1
Iy
{
"fromTable": "corder",
"toTables": [
"customer.corder"
]
+
]
+

Reverse workflow

As part of the SwitchWrites operation above, Vitess will automatically (unless you supply the -reverse_replication false
flag) setup a reverse VReplication workflow to copy changes now applied to the moved tables in the target keyspace (i.e. tables
customer and corder in the customer keyspace) back to the original source tables in the source keyspace (customer). This
allows us to reverse the process using additional SwitchReads and SwitchWrites commands without data loss, even after we
have started writing to the new copy of the table in the new keyspace. Note that the workflow for this reverse process is given
the name of the original workflow with _reverse appended. So in our example where the MoveTables workflow was called
commerce2customer; the reverse workflow would be commerce2customer_reverse.

302

Drop Sources

The final step is to remove the data from the original keyspace. As well as freeing space on the original tablets, this is an
important step to eliminate potential future confusions. If you have a misconfiguration down the line and accidentally route
queries for the customer and corder tables to commerce, it is much better to return a “table not found” error, rather than
return stale data:

$ vtctlclient DropSources customer.commerce2customer

After this step is complete, you should see an error similar to:

Expected to fazil!

mysql --table < ../common/select_commerce_data.sql

Using commerce/0

Customer

ERROR 1146 (42S502) at line 4: vtgate: http://localhost:15001/: target: commerce.0O.master,
used tablet: zonel-100

(localhost): vttablet: rpc error: code = NotFound desc = Table 'vt_commerce.customer'
doesn't exist (errno 1146)

(sqlstate 42502) (CallerID: userDatal): Sql: "select * from customer", BindVars: {}

This confirms that the data has been correctly cleaned up. Note that the DropSources process also cleans up the reverse
VReplication workflow mentioned above. Finally, the only thing that is not cleaned up is the explicit routing rules from the
source keyspace to the target keyspace. The assumption is that you might still have applications that refer to the tables by their
explicit schema.table designation, and you want these applications to (still) transparently be forwarded to the new location of
the data. When you are absolutely sure that no applications are using this access pattern, you can clean up the routing rules by
manually adjusting the routing rules via the vtctlclient ApplyRoutingRules command.

Next Steps

Congratulations! You've successfully moved tables between keyspaces. The next step to try out is to shard one of your keyspaces
in Resharding.

Operational

description: User guides for covering operational aspects of Vitess description: User guides covering operational aspects of Vitess
— — ## Backup and Restore

Backup and Restore are integrated features provided by tablets managed by Vitess. As well as using backups for data integrity,
Vitess will also create and restore backups for provisioning new tablets in an existing shard.

Concepts

Vitess supports pluggable interfaces for both Backup Storage Services and Backup Engines.

Before backing up or restoring a tablet, you need to ensure that the tablet is aware of the Backup Storage system and Backup
engine that you are using. To do so, use the following command-line flags when starting a vttablet that has access to the location
where you are storing backups.

303

https://github.com/vitessio/vitess/blob/master/go/vt/mysqlctl/backupstorage/interface.go
https://github.com/vitessio/vitess/blob/master/go/vt/mysqlctl/backupengine.go

Backup Storage Services Currently, Vitess has plugins for:

A network-mounted path (e.g. NFS)
¢ Google Cloud Storage

¢ Amazon S3
e Ceph

Backup Engines The engine is the techology used for generating the backup. Currently Vitess has plugins for:

¢ Builtin: Shutdown an instance and copy all the database files (default)
o XtraBackup: An online backup using Percona’s XtraBackup

VTTablet Configuration

The following options can be used to configure VT Tablet for backups:
Flags

backup_ storage implementation

Specifies the implementation of the Backup Storage interface to use. Current plugin options available are:

file: NFS or any other filesystem-mounted network drive.
ges: Google Cloud Storage.

s3: Amazon S3.

ceph: Ceph Object Gateway S3 APIL.

</td>
</tr>
<tr>
<td><code>backup_engine_implementation</code></td>
<td>Specifies the implementation of the Backup Engine to
use.

Current options available are:

<code>builtin</code>: Copy all the database files into specified storage.

the default.</1li>
<code>xtrabackup</code>: Percona Xtrabackup.

</td>
</tr>
<tr>
<td><code>backup_storage_hook</code></td>
<td>If set, the content of every file to backup is sent to a hook. The
hook receives the data for each file on stdin. It should echo the
transformed data to stdout. Anything the hook prints to stderr will
be printed in the vttablet logs.

Hooks should be located in the <code>vthook</code> subdirectory of the
<code>VTROOT</code> directory.

The hook receives a <code>-operation write</code> or a
<code>-operation read</code> parameter depending on the direction
of the data processing. For instance, <code>write</code> would be for
encryption, and <code>read</code> would be for decryption.</br>
</td>
</tr>
<tr>

304

This is

<td><code>backup_storage_compress</code></td>
<td>This flag controls if the backups are compressed by the Vitess code.
By default it is set to true. Use
<code>-backup_storage_compress=false</code> to disable.</br>
This is meant to be used with a <code>-backup_storage_hook</code>
hook that already compresses the data, to avoid compressing the data
twice.
</td>
</tr>
<tr>
<td><code>file_backup_storage_root</code></td>
<td>For the <code>file</code> plugin, this identifies the root directory
for backups.
</td>
</tr>
<tr>
<td><code>gcs_backup_storage_bucket</code></td>
<td>For the <code>gcs</code> plugin, this identifies the
bucket
to use.</td>
</tr>
<tr>
<td><code>s3_backup_aws_region</code></td>
<td>For the <code>s3</code> plugin, this identifies the AWS region.</td>
</tr>
<tr>
<td><code>s3_backup_storage_bucket</code></td>
<td>For the <code>s3</code> plugin, this identifies the AWS S3
bucket.</td>
</tr>
<tr>
<td><code>ceph_backup_storage_config</code></td>
<td>For the <code>ceph</code> plugin, this identifies the path to a text
file with a JSON object as configuration. The JSON object requires the
following keys: <code>accessKey</code>, <code>secretKey</code>,
<code>endPoint</code> and <code>useSSL</code>. Bucket name is computed
from keyspace name and shard name is separated for different
keyspaces / shards.</td>
</tr>
<tr>
<td><code>restore_from_backup</code></td>
<td>Indicates that, when started with an empty MySQL instance, the
tablet should restore the most recent backup from the specified
storage plugin.</td>
</tr>
<tr>
<td><code>xtrabackup_root_path</code></td>
<td>For the <code>xtrabackup</code> backup engine, directory location of the xtrabackup
executable, e.g., /usr/bin</td>
</tr>
<tr>
<td><code>xtrabackup_backup_flags</code></td>
<td>For the <code>xtrabackup</code> backup engine, flags to pass to backup command. These
should be space separated and will be added to the end of the command</td>
</tr>
<tr>

305

<td><code>xbstream_restore_flags</code></td>
<td>For the <code>xtrabackup</code> backup engine, flags to pass to xbstream command
during restore. These should be space separated and will be added to the end of the
command. These need to match the ones used for backup e.g. --compress / --decompress,
--encrypt / --decrypt</td>
</tr>
<tr>
<td><code>xtrabackup_stream_mode</code></td>
<td>For the <code>xtrabackup</code> backup engine, which mode to use if streaming, valid
values are <code>tar</code> and <code>xbstream</code>. Defaults to
<code>tar</code></td>
</tr>
<tr>
<td><code>xtrabackup_user</code></td>
<td>For the <code>xtrabackup</code> backup engine, required user that xtrabackup will use
to connect to the database server. This user must have all necessary privileges. For
details, please refer to xtrabackup documentation.</td>
</tr>
<tr>
<td><code>xtrabackup_stripes</code></td>
<td>For the <code>xtrabackup</code> backup engine, if greater than 0, use data striping
across this many destination files to parallelize data transfer and decompression</td>
</tr>
<tr>
<td><code>xtrabackup_stripe_block_size</code></td>
<td>For the <code>xtrabackup</code> backup engine, size in bytes of each block that gets
sent to a given stripe before rotating to the next stripe</td>
</tr>

Authentication Note that for the Google Cloud Storage plugin, we currently only support Application Default Credentials.
It means that access to Cloud Storage is automatically granted by virtue of the fact that you're already running within Google
Compute Engine or Container Engine.

For this to work, the GCE instances must have been created with the scope that grants read-write access to Cloud Storage.
When using Container Engine, you can do this for all the instances it creates by adding --scopes storage-rw to the gcloud
container clusters create command.

Backup Frequency We recommend to take backups regularly e.g. you should set up a cron job for it.

To determine the proper frequency for creating backups, consider the amount of time that you keep replication logs and allow
enough time to investigate and fix problems in the event that a backup operation fails.

For example, suppose you typically keep four days of replication logs and you create daily backups. In that case, even if a backup
fails, you have at least a couple of days from the time of the failure to investigate and fix the problem.

Concurrency The backup and restore processes simultaneously copy and either compress or decompress multiple files to
increase throughput. You can control the concurrency using command-line flags:

o The vtctl Backup command uses the -concurrency flag.
o vttablet uses the -restore_concurrency flag.

If the network link is fast enough, the concurrency matches the CPU usage of the process during the backup or restore process.

306

https://developers.google.com/identity/protocols/application-default-credentials
https://cloud.google.com/compute/docs/authentication#using
https://vitess.io/docs/reference/programs/vtctl/tablets/#backup

Creating a backup

Run the following vtctl command to create a backup:

vtctl Backup <tablet-alias>
If the engine is builtin, in response to this command, the designated tablet performs the following sequence of actions:
1. Switches its type to BACKUP. After this step, the tablet is no longer used by VT'Gate to serve any query.

Stops replication, gets the current replication position (to be saved in the backup along with the data).

Shuts down its mysqld process.

Ll

Copies the necessary files to the Backup Storage implementation that was specified when the tablet was started. Note if
this fails, we still keep going, so the tablet is not left in an unstable state because of a storage failure.

(@1

Restarts mysqld.
6. Restarts replication (with the right semi-sync flags corresponding to its original type, if applicable).

7. Switches its type back to its original type. After this, it will most likely be behind on replication, and not used by VT Gate
for serving until it catches up.

If the engine is xtrabackup, we do not do any of the above. The tablet can continue to serve traffic while the backup is running.

Restoring a backup

When a tablet starts, Vitess checks the value of the ~restore_from_backup command-line flag to determine whether to restore
a backup to that tablet.

o If the flag is present, Vitess tries to restore the most recent backup from the Backup Storage system when starting the
tablet.

o If the flag is absent, Vitess does not try to restore a backup to the tablet. This is the equivalent of starting a new tablet
in a new shard.

As noted in the Configuration section, the flag is generally enabled all of the time for all of the tablets in a shard. By default, if
Vitess cannot find a backup in the Backup Storage system, the tablet will start up empty. This behavior allows you to bootstrap
a new shard before any backups exist.

If the ~wait_for_backup_interval flag is set to a value greater than zero, the tablet will instead keep checking for a backup
to appear at that interval. This can be used to ensure tablets launched concurrently while an initial backup is being seeded for
the shard (e.g. uploaded from cold storage or created by another tablet) will wait until the proper time and then pull the new
backup when it’s ready.

vttablet ... -backup_storage_implementation=file \
-file_backup_storage_root=/nfs/XXX \
-restore_from_backup

Managing backups

vtctl provides two commands for managing backups:

 ListBackups displays the existing backups for a keyspace/shard in chronological order.

vtctl ListBackups <keyspace/shard>

o RemoveBackup deletes a specified backup for a keyspace/shard.

RemoveBackup <keyspace/shard> <backup name>

307

https://vitess.io/docs/reference/programs/vtctl/shards/#listbackups
https://vitess.io/docs/reference/programs/vtctl/shards/#removebackup

Bootstrapping a new tablet

Bootstrapping a new tablet is almost identical to restoring an existing tablet. The only thing you need to be cautious about is
that the tablet specifies its keyspace, shard and tablet type when it registers itself at the topology. Specifically, make sure that
the following additional vttablet parameters are set:

-init_keyspace <keyspace>
—-init_shard <shard>
-init_tablet_type replicalrdonly

The bootstrapped tablet will restore the data from the backup and then apply changes, which occurred after the backup, by
restarting replication.

Backing up Topology Server

The Topology Server stores metadata (and not tablet data). It is recommended to create a backup using the method described
by the underlying plugin:

e eted
e ZooKeeper
¢ Consul

Making Schema Changes

For applying schema changes for MySQL instances managed by Vitess, there are a few options.

ApplySchema

ApplySchema is a vtctlclient command that can be used to apply a schema to a keyspace. The main advantage of using this
tool is that it performs some sanity checks about the schema before applying it. For example, if the schema change affects too
many rows of a table, it will reject it.

However, the downside is that it is a little too strict, and may not work for all use cases.

VTGate

You can send a DDL statement directly to a VT Gate just like you would send to a MySQL instance. If the target is a sharded
keyspace, then the DDL would be scattered to all shards.

If a specific shard fails you can target it directly using the keyspace/shard syntax to retry the apply just to that shard.

If VT'Gate does not recognize a DDL syntax, the statement will get rejected.

This approach is not recommended for changing large tables.

Directly to MySQL

You can apply schema changes directly to the underlying MySQL shard master instances. VT Tablet will eventually notice the
change and update itself (this is controlled by the -~queryserver-config-schema-reload-time parameter and defaults to 1800
seconds). You can also explicitly issue the vtctlclient ReloadSchema command to make it reload immediately.

This approach can be extended to use schema deployment tools like gh-ost or pt-online-schema-change. Using these schema
deployment tools is the recommended approach for large tables, because they incur no downtime.

308

https://etcd.io/docs/v3.4.0/op-guide/recovery/
http://zookeeper.apache.org/doc/r3.6.0/zookeeperAdmin.html#sc_dataFileManagement
https://www.consul.io/docs/commands/snapshot.html

Upgrading Vitess

This document highlights things to be aware of when upgrading a Vitess production installation to a newer Vitess release.

Generally speaking, upgrading Vitess is a safe and easy process because it is explicitly designed for it. This is because at YouTube
we followed the practice of releasing new versions often (usually from the tip of the Git master branch).

Compatibility

Our versioning strategy is based on Semantic Versioning.

Vitess version numbers follow the format MAJOR.MINOR.PATCH. We guarantee compatibility when upgrading to a newer patch
or minor version. Upgrades to a higher major version may require manual configuration changes.

In general, always read the ‘Upgrading’ section of the release notes. It will mention any incompatible changes and
necessary manual steps.

Upgrade Order
We recommend to upgrade components in a bottom-to-top order such that “old” clients will talk to “new” servers during the
transition.

Please use this upgrade order (unless otherwise noted in the release notes):

o vttablet

e vtctld

e vtgate

e application code which links client libraries

Canary Testing

Within the vtgate and vttablet components, we recommend to canary single instances, keyspaces and cells. Upgraded canary
instances can “bake” for several hours or days to verify that the upgrade did not introduce a regression. Eventually, you can
upgrade the remaining instances.

Rolling Upgrades
We recommend to automate the upgrade process with a configuration management software. It will reduce the possibility of
human errors and simplify the process of managing all instances.

As of June 2016 we do not have templates for any major open-source configuration management software because our internal
upgrade process is based on a proprietary software. Therefore, we invite open-source users to contribute such templates.

Any upgrade should be a rolling release i.e. usually one tablet at a time within a shard. This ensures that the remaining tablets
continue serving live traffic and there is no interruption.

Upgrading the Master Tablet
The master tablet of each shard should always be updated last in the following manner:

o verify that all replica tablets in the shard have been upgraded
e reparent away from the current master to a replica tablet
e upgrade old master tablet

309

http://semver.org/
http://martinfowler.com/bliki/CanaryRelease.html

Making Schema Changes

description:
This user guide describes the problem space of schema changes and the various approaches you may use with Vitess.

Quick links:

o Vitess supports EXPERIMENTAL managed, online schema changes via gh-ost or pt-online-schema-change, and with
visibility and control over the migration process
o Multiple approaches to unmanaged schema changes, either blocking, or owned by the user/DBA.

Some background on schema changes follows.

The schema change problem

Schema change is one of the oldest problems in MySQL. With accelerated development and deployment flows, engineers find they
need to deploy schema changes sometimes on a daily basis. With the growth of data this task becomes more and more difficult.
A direct MySQL ALTER TABLE statement is a blocking (no reads nor writes are possible on the migrated table) and resource
heavy operation; variants of ALTER TABLE include InnoDB Online DDL, which allows for some concurrency on a primary (aka
master) server, but still blocking on replicas, leading to unacceptable replication lags once the statement hits the replicas.

ALTER TABLE operations are greedy, consume as much CPU/Disk IO as needed, are uninterruptible and uncontrollable. Once the
operation has begun, it must run to completion; aborting an ALTER TABLE may be more expensive than letting it run through,
depending on the progress the migration has made.

Direct ALTER TABLE is fine in development or possibly staging environments, where datasets are either small, or where table
locking is acceptable.

ALTER TABLE solutions

Busy production systems tend to use either of these two approaches, to make schema changes less disruptive to ongoing production
traffic:

o Using online schema change tools, such as gh-ost and pt-online-schema-change. These tools emulate an ALTER TABLE
statement by creating a ghost table in the new desired format, and slowly working through copying data from the existing
table, while also applying ongoing changes throughout the migration. Online schema change tools can be throttled on high
load, and can be interrupted at will.

e Run the migration independently on replicas; when all replicas have the new schema, demote the primary and promote a
replica as the new primary; then, at leisure, run the migration on the demoted server. Two considerations if using this
approach are:

— Each migration requires a failover (aka successover, aka planned reparent).
— Total wall clock time is higher since we run the same migration in sequence on different servers.

Schema change cycle and operation

The cycle of schema changes, from idea to production, is complex, involves multiple environments and possibly multiple teams.
Below is one possible breakdown common in production. Notice how even interacting with the database itself takes multiple
steps:

Design: the developer designs a change, tests locally

Publish: the developer calls for review of their changes (e.g. on a Pull Request)

Review: developer’s colleagues and database engineers to check the changes and their impact

Formalize: what is the precise ALTER TABLE statement to be executed? If running with gh-ost or pt-online-schema-change,
what are the precise command line flags?

=W

310

https://dev.mysql.com/doc/refman/5.7/en/innodb-online-ddl-operations.html
https://github.com/github/gh-ost
https://www.percona.com/doc/percona-toolkit/3.0/pt-online-schema-change.html

5. Locate: where does this change need to go? Which keyspace/cluster? Is this cluster sharded? What are the shards?
Having located the affected MySQL clusters, which is the primary server per cluster?
6. Schedule: is there an already running migration on the relevant keyspace/cluster(s)?
7. Execute: invoke the command. In the time we waited, did the identity of primary servers change?
8. Audit/control: is the migration in progress? Do we need to abort for some reason?
9. Cut-over/complete: a potential manual step to complete the migration process
10. Cleanup: what do you do with the old tables? An immediate DROP is likely not advisable. What’s the alternative?
11. Notify user: let the developer know their changes are now in production.
12. Deploy & merge: the developer completes their process.

Steps 4 - 10 are tightly coupled with the database or with the infrastrcture around the database.

Schema change and Vitess

Vitess solves or automates multiple parts of the flow:

Formalize In managed, online schema changes the user supplies a valid SQL ALTER TABLE statement, and Vitess generates the
gh-ost or pt-online-schema-change command line invocation. It will also auto generate config files and set up the environment
for those tools. This is hidden from the user.

Locate For a given table in a given keyspace, Vitess knows at all times:

o In which shards (MySQL clusters) the table is found
o Which is the primary server per shard.

When using either managed schema changes, or direct schema changes via vtctl or vtgate, Vitess resolves the discovery of the
affected servers automatically, and this is hidden from the user.

Schedule In managed, online schema changes, Vitess owns and tracks all pending and active migrations. As a rule of thumb,
it is generally advisable to only run one online schema change at a time on a given server. Following that rule of thumb, Vitess
will queue incoming schema change requests and schedule them to run sequentially.

Execute In managed, online schema changes, Vitess owns the execution of gh-ost or pt-online-schema-change. While these
run in the background, Vitess keeps track of the migratoin state.

In direct schema changes via vtctl or vtgate, Vitess issues a synchronous ALTER TABLE statement on the relevant shards.

Audit/control In managed, online schema changes, Vitess keeps track of the state of the migration. It automatically detects
when the migration is complete or has failed. It will detect failure even if the tablet itself, which is running the migration, fails.
Vitess allows the user to cancel a migration. If such a migration is queued by the scheduler, then it is unqueued. If it’s already
running, it is interrupted and aborted. Vitess allows the user to check on a migration status across the relevant shards.

Cut-over/complete Vitess runs automated cut-overs. The migration will complete as soon as it’s able to.

Cleanup In the case of managed, online schema changes via pt-online-schema-change, Vitess will ensure to drop the triggers
in case the tool failed to do so for whatever reason.

Vitess automatically garbage-collects the “old” tables, artifacts of gh-ost and pt-online-schema-change. It drops those tables
in an incremental, non blocking method.

311

The various approaches

Vitess allows a variety of approaches to schema changes, from fully automated to fully owned by the user.

e Managed, online schema changes are experimental at this time, but are Vitess’s way forward

¢ Direct, blocking ALTERs are generally impractical in production given that they can block writes for substantial lengths
of time.

e User controlled migrations are allowed, and under the user’s responsibility.

See breakdown in managed, online schema changes and in unmanaged schema changes.

Managed, Online Schema Changes

Note: this feature is EXPERIMENTAL. Also, the syntax for online-DDL is subject to change.

Vitess offers managed, online schema migrations, via gh-ost and pt-online-schema-change. As a quick breakdown:

o Vitess recognizes a special ALTER TABLE syntax that indicates an online schema change request.

o Vitess responds to an online schema change request with a job ID

o Vitess resolves affected shards

o A shard’s primary tablet schedules the migration to run when possible

o The tablets run migrations via gh-ost or pt-online-schema-change

e Vitess provides the user a mechanism to view migration status, cancel or retry migrations, based on the job ID

Syntax

Note: while this feature is experimental the syntax is subject to change.
We assume we have a keyspace (schema) called commerce, with a table called demo, that has the following definition:

CREATE TABLE “demo (
“id® int NOT NULL,
“status”~ varchar (32) DEFAULT NULL,
PRIMARY KEY (~id’~)

) ENGINE=InnoDB

The following syntax is valid and is interpreted by Vitess as an online schema change request:

ALTER WITH 'gh-ost' TABLE demo modify id bigint unsigned;

ALTER WITH 'gh-ost' '--max-load="Threads_running=200"' TABLE demo modify id bigint unsigned;

ALTER WITH 'pt-osc' TABLE demo ADD COLUMN created_timestamp TIMESTAMP NOT NULL;

ALTER WITH 'pt-osc' '--null-to-not-null' TABLE demo ADD COLUMN created_timestamp TIMESTAMP
NOT NULL;

gh-ost and pt-osc are the only supported values. Any other value is a syntax error. Specifics about gh-ost and
pt-online-schema-change follow later on.

You may use this syntax either with vtctlclient or via vtgate

ApplySchema

Invocation is similar to direct DDL statements. However, the response is different:

$ vtctlclient ApplySchema -sql "ALTER WITH 'gh-ost' TABLE demo modify id bigint unsigned"
commerce
a2994c92_f1d4_1lea_afa3_£875a4d24e90

312

https://github.com/github/gh-ost
https://www.percona.com/doc/percona-toolkit/3.0/pt-online-schema-change.html

When the user indicates online schema change (aka online DDL), vtctl registers an online-DDL request with global topo. This
generates a job ID for tracking. vtctl does not try to resolve the shards nor the primary tablets. The command returns
immediately, without waiting for the migration(s) to start. It prints out the job ID (a2994c92_f1d4_1lea_afa3_f875a4d24e90
in the above)

If we immediately run SHOW CREATE TABLE, we are likely to still see the old schema:
SHOW CREATE TABLE demo;

CREATE TABLE “demo~ (
“id~ int NOT NULL,
“status~ varchar (32) DEFAULT NULL,
PRIMARY KEY (id~)

) ENGINE=InnoDB

We discuss how the migration jobs get scheduled and executed shortly. We will use the job ID for tracking.
ApplySchema will have vitess run some validations:

$ vtctlclient ApplySchema -sql "ALTER WITH 'gh-ost' TABLE demo add column status int"
commerce
E0908 16:17:07.651284 3739130 main.go:67] remote error: rpc error: code = Unknown desc =
schema change failed, ExecuteResult: {
"FailedShards": null,

"SuccessShards": null,
"CurSQLIndex": O,
"SqlS"I [
"ALTER WITH 'gh-ost' TABLE demo add column status int"
1,
"ExecutorErr": "rpc error: code = Unknown desc = TabletManager.PreflightSchema on
zonel -0000000100 error: /usr/bin/mysql: exit status 1, output: ERROR 1060 (42S21) at
line 3: Duplicate column name 'status' : /usr/bin/mysql: exit status 1, output: ERROR

1060 (42521) at line 3: Duplicate column name 'status' ",
"TotalTimeSpent": 144283260
}

Vitess was able to determine that the migration is invalid because a column named status already exists. vtctld generates no
job ID, and does not persist any migration request.

VTGate

You may run online DDL directly from VTGate. For example:

$ mysql -h 127.0.0.1 -P 15306 commerce
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> ALTER WITH 'pt-osc' TABLE demo ADD COLUMN sample INT;

T e e +
| uuid |
T +
| fa2fb689_f1d5_1lea_859e_f875a4d24e90 |
B +

1 row in set (0.00 sec)

Just like in the previous example, VTGate identifies that this is an online schema change request, and persists it in global topo,
returning a job ID for tracking. Migration does not start immediately.

313

Migration flow and states
We highlight how Vitess manages migrations internally, and explain what states a migration goes through.

e Whether via vtctlclient ApplySchema or via VIGate as described above, a migration request entry is persisted in global
topo (e.g. the global etcd cluster).

e vtctld periodically checks on new migration requests.

e vtctld resolves the relevant shards, and the primary tablet for each shard.

o vtctld pushes the request to all relevant primary tablets.

e If not all shards confirm receipt, vtctld periodically keeps retrying pushing the request to the shards until all approve.

o Internally, tablets persist the request in a designated table in the _vt schema. Do not manipulate that table directly as
that can cause inconsistencies.

e A shard’s primary tablet owns running the migration. It is independent of other shards. It will schedule the migration to
run when possible. A tablet will not run two migrations at the same time.

e A migration is first created in queued state.

o If the tablet sees queued migration, and assuming there’s no reason to wait, it picks the oldest requested migration in
queued state, and moves it to ready state.

e Tablet then prepares for the migration. It creates a MySQL account with a random password, to be used by this migration
only. It creates the command line invocation, and extra scripts if possible.

e The tablet then runs the migration. Whether gh-ost or pt-online-schema-change, it first runs in dry run mode, and, if
successful, in actual erecute mode. The migration is then in running state.

e The migration will either run to completion, fail, or be interrupted. If successful, it transitions into complete state, which
is the end of the road for that migration. If failed or interrupted, it transitions to failed state. The user may choose to
retry failed migrations (see below).

o The user is able to cancel a migration (details below). If the migration hasn’t started yet, it transitions to cancelled
state. If the migration is running, then it is interrupted, and is expected to transition into failed state.

By way of illustration, suppose a migration is now in running state, and is expected to keep on running for the next few hours.
The user may initiate a new ALTER WITH 'gh-ost' TABLE... statement. It will persist in global topo. vtctld will pick it up
and advertise it to the relevant tablets. Each will persist the migration request in queued state. None will run the migration yet,
since another migration is already in progress. In due time, and when the executing migration completes (whether successfully
or not), and assuming no other migrations are queued, the primary tablets, each in its own good time, will execute the new
migration.

At this time, the user is responsible to track the state of all migrations. VTTablet does not report back to vtctld. This may
change in the future.

At this time, there are no automated retries. For example, a failover on a shard causes the migration to fail, and Vitess will not
try to re-run the migration on the new primary. It is the user’s responsibility to issue a retry. This may change in the future.

Tracking migrations

You may track the status of a single migration, of all or recent migrations, or of migrations in a specific state. Examples:

$ vtctlclient OnlineDDL commerce show ab3ffdd5_f25c_1lea_bab4d_0242c0a8b007

Fom e e i Fommmm e et et T e L +-—-
| Tablet | shard | mysql_schema | mysql_table | migration_uuid
| strategy | started_timestamp | completed_timestamp | migration_status |

e B Fommmm e Fomm - B e +-—-
| test-0000000201 | 40-80 | vt_commerce | demo |

ab3ffdd5_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:24:33 | 2020-09-09

05:24:34 | complete |
| test-0000000301 | 80-cO | vt_commerce | demo |

ab3ffdd5_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:25:13 | 2020-09-09

05:25:14 | complete |
| test-0000000401 | cO- | vt_commerce | demo |

ab3ffdd5_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:25:13 | 2020-09-09

05:25:14 | complete [

314

| test-0000000101 | -40 | vt_commerce | demo |

ab3ffdd5_f25c_llea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:25:13 | 2020-09-09
05:25:14 | complete |
e e fommmm e e B ettt +-—-

$ vtctlclient OnlineDDL commerce show 8a797518_f25c_1llea_bab4_0242c0a8b007

T +o———— - Fommm e Fomm - Fm o +-—-
| Tablet | shard | mysql_schema | mysql_table | migration_uuid
| strategy | started_timestamp | completed_timestamp | migration_status |
Fomm e e fommmm e e e e +-—-
| test-0000000401 | cO- | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| running |
| test-0000000201 | 40-80 | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 | 2020-09-09
05:23:33 | complete |
| test-0000000301 | 80-cO | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| running |
| test-0000000101 | -40 | vt_commerce | demo |
8a797518_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| running |
Fmmm - +o———— - Fommm e Fomm - B et +——-

$ vtctlclient OnlineDDL commerce show 8a797518_f25c_1lea_bab4d_0242c0a8b007

fomm - tm—mm - fommmm e fommmm - e e +-—-
| Tablet | shard | mysql_schema | mysql_table | migration_uuid
| strategy | started_timestamp | completed_timestamp | migration_status |
Fomm - +-—————- Fommm e Fomm - o +-—-
| test-0000000401 | cO- | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
| test-0000000101 | -40 | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
| test-0000000301 | 80-cO | vt_commerce | demo |
8a797518_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
| test-0000000201 | 40-80 | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 | 2020-09-09
05:23:33 | complete |
fomm e tm—mm— - fommmm e fommmm - e e +-—-

$ vtctlclient OnlineDDL commerce show recent

Fomm - +-—————- Fommm e Fomm - o +-—-
I Tablet | shard | mysql_schema | mysql_table | migration_uuid
| strategy | started_timestamp | completed_timestamp | migration_status |

Fom e tmmmm - Fommmmmm e fommmm e e e e e +-—-
| test-0000000201 | 40-80 | vt_commerce | demo |

63b5db0c_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:22:41 | 2020-09-09

05:22:42 | complete |
| test-0000000201 | 40-80 | vt_commerce | demo |

8a797518_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 | 2020-09-09

05:23:33 | complete |
| test-0000000201 | 40-80 | vt_commerce | demo |

ab3ffdd5_f25c_llea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:24:33 | 2020-09-09

315

05:24:34 | complete |

| test-0000000301 | 80-cO | vt_commerce | demo |
63b5db0c_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:22:41 | 2020-09-09
05:22:42 | complete |
| test-0000000301 | 80-cO | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
| test-0000000301 | 80-cO | vt_commerce | demo |
ab3ffdd5_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:25:13 | 2020-09-09
05:25:14 | complete |
| test-0000000401 | cO- | vt_commerce | demo |
63b5db0c_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:22:41 | 2020-09-09
05:22:42 | complete |
| test-0000000401 | cO- | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
| test-0000000401 | cO- | vt_commerce | demo |
ab3ffdd5_f25c_llea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:25:13 | 2020-09-09
05:25:14 | complete |
| test-0000000101 | -40 | vt_commerce | demo |
63b5db0c_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:22:41 | 2020-09-09
05:22:42 | complete |
| test-0000000101 | -40 | vt_commerce | demo |
8a797518_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
| test-0000000101 | -40 | vt_commerce | demo |
ab3ffdd5_f25c_llea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:25:13 | 2020-09-09
05:25:14 | complete |
- R Fmm e fmm e - -

$ vtctlclient OnlineDDL commerce show failed

Fommmm e tommm - Fommmm e fommmm - e e T +-—-
| Tablet | shard | mysql_schema | mysql_table | migration_uuid
| strategy | started_timestamp | completed_timestamp | migration_status |
Fomm - B Fommmm e Fomm - et Tt +-—-
| test-0000000301 | 80-cO | vt_commerce | demo |
8a797518_f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
| test-0000000401 | cO- | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
| test-0000000101 | -40 | vt_commerce | demo |
8a797518_£f25c_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 05:23:32 |
| failed |
Fomm - +-—————- Fommm e Fomm - o +-—-

The syntax for tracking migrations is:

vtctlclient OnlineDDL <keyspace> show
<migration_id|all|recent|queued|ready|running|complete|failed|cancelled>

Cancelling a migration

The user may cancel a migration, as follows:

o If the migration hasn’t started yet (it is queued or ready), then it is removed from queue and will not be executed.

316

e If the migration is running, then it is forcibly interrupted. The migration is expected to transition to failed state.

o In all other cases, cancelling a migration has no effect.

The syntax to cancelling a migration is:

vtctlclient OnlineDDL cancel <migration_id>

Example:

$ vtctlclient OnlineDDL commerce show 2201058f f266_11ea_bab4_0242c0a8b007

T +o———— - Fomm e Fomm - oo
mysql_table |

| Tablet | shard | mysql_schema

| strategy | started_timestamp | completed_timestamp | migration_status
Fomm e T Fomm e Fomm - o
| test-0000000301 | 80-cO | vt_commerce | demo |
2201058f _f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| running |
| test-0000000101 | -40 | vt_commerce | demo |
2201058f_f266_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| running |
| test-0000000401 | cO- | vt_commerce | demo |
2201058f_f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| running |
| test-0000000201 | 40-80 | vt_commerce | demo |
2201058f_f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| running |
o e Fmmmmmm e Fmmm B e e e

$ vtctlclient OnlineDDL commerce

e fmm e +
| Tablet | RowsAffected |
s fo————————————— +
test-0000000401	1
test-0000000101	1
test-0000000201	1
test-0000000301	1
fommmmmmmmmmm—— - fo————————————— +

migration_uuid

cancel 2201058f_f266_1lea_bab4_0242c0a8b007

$ vtctlclient OnlineDDL commerce show 2201058f f266_1lea_bab4_0242c0a8b007

Fom - +o—— Fommm Fomm - e PP

| Tablet | shard | mysql_schema

| strategy | started_timestamp | completed_timestamp | migration_status
- R Fmm e fmm e T T TP
| test-0000000401 | cO- | vt_commerce | demo |
2201058f_f266_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| failed I
| test-0000000301 | 80-cO | vt_commerce | demo |
2201058f _f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| failed |
| test-0000000201 | 40-80 | vt_commerce | demo |
2201058f_f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| failed |
| test-0000000101 | -40 | vt_commerce | demo |
2201058f_f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| failed |
e B o o T T

mysql_table |

317

migration_uuid

Retrying a migration

The user may retry running a migration. If the migration is in failed or in cancelled state, Vitess will re-run the migration,

with exact same arguments as previously intended. If the migration is in any other state, retry does nothing.

It is not possible to retry a migration with different options. e.g. if the user initially runs ALTER WITH 'gh-ost' '--max-load
Threads_running=200' TABLE demo MODIFY id BIGINT and the migration failed, it is not possible to retry with '--max-load

Threads_running=500"'

Continuing the above example, where we cancelled a migration while running, we now retry it:

$ vtctlclient OnlineDDL commerce show 2201058f_f266_11ea_bab4_0242c0a8b007
fmm - R Fmm e fmm e T T T
| Tablet | shard | mysql_schema | mysql_table | migration_uuid
| strategy | started_timestamp | completed_timestamp | migration_status
o B Fmmmm e o -
| test-0000000401 | cO- | vt_commerce | demo |
2201058f _f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| failed |
| test-0000000301 | 80-cO | vt_commerce | demo |
2201058f_f266_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| failed |
| test-0000000201 | 40-80 | vt_commerce | demo |
2201058f_f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| failed |
| test-0000000101 | -40 | vt_commerce | demo |
2201058f_£f266_1lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:32:31 |
| failed |
fmm - R Fmm e fmm e e T
$ vtctlclient OnlineDDL commerce retry 2201058f_£f266_1lea_bab4_0242c0a8b007
o Fmmmm e +
| Tablet | RowsAffected |
fmm - fmm e +
test-0000000101	1
test-0000000201	1
test-0000000301	1
test-0000000401	1
fomm e - Fommmmm +	
$ vtctlclient OnlineDDL commerce show 2201058f f266_1lea_bab4_0242c0a8b007	
e e o e -	
Tablet	shard
strategy	started_timestamp
fmm - fmm——— fmmm e fmm T e T T	
test-0000000201	40-80
2201058f _f266_1lea_bab4_0242c0a8b007	gh-ost
queued	
test-0000000101	-40
2201058f _£266_1lea_bab4_0242c0a8b007	gh-ost
queued	
test-0000000301	80-cO
2201058f _f266_11ea_bab4_0242c0a8b007	gh-ost
queued	
test-0000000401	cO-
2201058f _£266_1lea_bab4_0242c0a8b007	gh-ost
queued	
e e o fmm e -

318

$ vtctlclient OnlineDDL commerce show 2201058f_f266_11ea_bab4d_0242c0a8b007

Fomm - to—— Fommm e Fomm - e e et +-—-
| Tablet | shard | mysql_schema | mysql_table | migration_uuid
| strategy | started_timestamp | completed_timestamp | migration_status |
Fmmm - to———— Fommm e Fomm - B T +——-
| test-0000000101 | -40 | vt_commerce | demo |
2201058f_f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:37:33 |
| running |
| test-0000000401 | cO- | vt_commerce | demo |
2201058f _f266_11ea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:37:33 |
| running |
| test-0000000201 | 40-80 | vt_commerce | demo |
2201058f_f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:37:33 |
| running |
| test-0000000301 | 80-cO | vt_commerce | demo |
2201058f _f266_11lea_bab4_0242c0a8b007 | gh-ost | 2020-09-09 06:37:33 |
| running |
Fomm - to——— Fommm e fomm - e et e +-—-

gh-ost and pt-online-schema-change

The user must pick one of these migration tools. The tools differ in features, operation, load, and more.

Using gh-ost

gh-ost was developed by GitHub as a lightweight and safe schema migration tool.

To be able to run online schema migrations via gh-ost:

o If youre on Linux/amd64 architecture, and on glibc 2.3 or similar, there are no further dependencies. Vitess comes with
a built-in gh-ost binary, that is compatible with your system.
e On other architectures:

— Have gh-ost executable installed
— Run vttablet with -gh-ost-path=/full/path/to/gh-ost flag

Vitess automatically creates a MySQL account for the migration, with a randomly generated password. The account is destroyed
at the end of the migration.

Vitess takes care of setting up the necessary command line flags. It automatically creates a hooks directory and populates it
with hooks that report gh-ost’s progress back to Vitess. You may supply additional flags for your migration as part of the
ALTER statement. Examples:

e ALTER WITH 'gh-ost' '--max-load Threads_running=200' TABLE demo MODIFY id BIGINT

e ALTER WITH 'gh-ost' '--critical-load Threads_running=500 --critical-load-hibernate-seconds=60"'
--default-retries=512 TABLE demo MODIFY id BIGINT

e ALTER WITH 'gh-ost' '--allow-nullable-unique-key -—chunk-size 200' TABLE demo MODIFY id BIGINT

Do not override the following flags: alter, database, table, execute, max-lag, force-table-names, serve-socket-file,
hooks-path, hooks-hint-token, panic-flag-file.

gh-ost throttling is done via Vitess’s own tablet throttler, based on replication lag.

319

https://github.com/github/gh-ost
https://github.com

Using pt-online-schema-change

pt-online-schema-change is part of Percona Toolkit, a set of Perl scripts. To be able to use pt-online-schema-change, you
must have the following setup on all your tablet servers (normally tablets are co-located with MySQL on same host and so this
implies setting up on all MySQL servers):

e pt-online-schema-change tool installed and is executable

o Perl 1ibdbi and libdbd-mysql modules installed. e.g. on Debian/Ubuntu, sudo apt-get install libdbi-perl
libdbd-mysql-perl

e Run vttablet with -pt-osc-path=/full/path/to/pt-online-schema-change flag.

Vitess automatically creates a MySQL account for the migration, with a randomly generated password. The account is destroyed
at the end of the migration.

Vitess takes care of supplying the command line flags, the DSN, the username & password. It also sets up PLUGINS used to
communicate migration progress back to the tablet. You may supply additional flags for your migration as part of the ALTER
statement. Examples:

e ALTER WITH 'pt-osc' '--null-to-not-null' TABLE demo MODIFY id BIGINT
o ALTER WITH 'pt-osc' '--max-load Threads_running=200' TABLE demo MODIFY id BIGINT
e ALTER WITH 'pt-osc' '--alter-foreign-keys-method auto --chunk-size 200' TABLE demo MODIFY id BIGINT

Vitess tracks the state of the pt-osc migration. If it fails, Vitess makes sure to drop the migration triggers. Vitess keeps track of
the migration even if the tablet itself restarts for any reason. Normally that would terminate the migration; vitess will cleanup
the triggers if so, or will happily let the migration run to completion if not.

Do not override the following flags: alter, pid, plugin, dry-run, execute, new-table-name, [no-]drop-new-table,
[no-ldrop-old-table.

pt-osc throttling is done via Vitess’s own tablet throttler, based on replication lag, and via a pt-online-schema-change plugin.

Throttling
Schema migrations use the tablet throttler, which is a cooperative throttler service based on replication lag. The tablet throttler
automatically detectes topology REPLICA tablets and adapts to changes in the topology. See Tablet throttler.

NOTE that at this time the tablet throttler is an experimental feature and is opt in. Enable it with vttablet’s
-enable-lag-throttler flag. If the tablet throttler is disabled, schema migrations will not throttle on replication lag.

Table cleanup

Both gh-ost and pt-online-schema-change leave artifacts behind. Whether successful or failed, either the original table or
the ghost table are left still populated at the end of the migration. Vitess explicitly configures both tools to not drop those
tables. The reason is that in MySQL, a DROP TABLE operation can be dangerous in production as it commonly locks the buffer
pool for a substantial period.

Artifact tables are identifiable via SELECT artifacts FROM _vt.schema_migrations in a VExec command, see below.

Vitess automatically cleans up those tables as soon as a migration completes (either successful or failed). You will normally not
need to do anything.

VExec commands for greater control and visibility
vtctlclient OnlineDDL command should provide with most needs. However, Vitess gives the user greater control through the
VExec command and via SQL queries.

For schema migrations, Vitess allows operations on the virtual table _vt.schema_migrations. Queries on this virtual table
scatter to the underlying tablets and gather or manipulate data on their own, private backend tables (which incidentally are
called by the same name). VExec only allows specific types of queries on that table.

320

https://www.percona.com/doc/percona-toolkit/3.0/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/3.0/index.html

e SELECT: you may SELECT any column, or SELECT *. vtctlclient OnlineDDL show commands only present with a
subset of columns, and so running VExec SELECT provides greater visibility. Some columns that are not shown are:

— log_path: tablet server and path where migration logs are.

— artifacts: tables created by the migration. This can be used to determine which tables need cleanup.

— alter: the exact alter statement used by the migration

— options: any options passed by the user (e.g. ——max-load=Threads_running=200)

— Various timestamps indicating the migratoin progress Aggregate functions do not work as expected and should be
avoided. LIMIT and OFFSET are not supported.

e UPDATE: you may directly update the status of a migration. You may only change status into cancel or retry, which
Vitess interprets similarly to a vtctlclient OnlineDDL cancel/retry command. However, you get greater control as
you may filter on a specific shard.

e DELETE: unsupported

e INSERT: unsupported, used internally only to advertise new migration requests to the tablets.

The syntax to run VExec queries is:

vtctlclient VExec <keyspace>.<migration_id> "<sql query>"

Examples:

$ vtctlclient VExec commerce.2201058f_f266_11lea_bab4_0242c0a8b007 "select * from
_vt.schema_migrations"

$ vtctlclient VExec commerce.91b5c953-ele2-11ea-a097-£f875a4d24e90 "update
_vt.schema_migrations set migration_status='retry'

$ vtctlclient VExec commerce.91b5c953-ele2-11ea-a097-£875a4d24e90 "update
_vt.schema_migrations set migration_status='retry' where shard='40-80'

$ vtctlclient VExec commerce.2201058f_ f266_11ea_bab4_0242c0a8b007 "select shard,
mysql_table, migration_uuid, started_timestamp, completed_timestamp, migration_status
from _vt.schema_migrations"

e to—————- Fommm e Fmm - e et

I Tablet | shard | mysql_table | migration_uuid
started_timestamp | completed_timestamp | migration_status |

Fmmm e R Fmmm e Fm - Fmm

| test-0000000301 | 80-cO | demo | 2201058f_£266_1l1ea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

| test-0000000101 | -40 | demo | 2201058f_£266_11ea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

| test-0000000201 | 40-80 | demo | 2201058f_£f266_1lea_bab4_0242c0a8b007 | 2020-09-09
08:31:47 | | failed

| test-0000000401 | cO- | demo | 2201058f_£266_11ea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

e e fommmm - o m - Fommmm

$ vtctlclient VExec commerce.2201058f_£f266_llea_bab4_0242c0a8b007 "update
_vt.schema_migrations set migration_status='retry' where
migration_uuid="'2201058f_f266_11lea_bab4_0242c0a8b007' and shard='40-80"'"

e o +
| Tablet | RowsAffected |
e Fommm e +
| test-0000000201 | 1 |
o fommmm +

$ vtctlclient VExec commerce.2201058f_ f266_11ea_bab4_0242c0a8b007 "select shard,
mysql_table, migration_uuid, started_timestamp, completed_timestamp, migration_status
from _vt.schema_migrations"

321

+ -

+ -

+ -

+ -

+ -

+ -

———————————————— B e et e ittt L LR P

Tablet | shard | mysql_table | migration_uuid

started_timestamp | completed_timestamp | migration_status |

———————————————— e Sttt it

test-0000000301 | 80-cO | demo | 2201058f_£f266_1lea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

test-0000000201 | 40-80 | demo | 2201058f_£266_11ea_bab4_0242c0a8b007 | 2020-09-09
08:34:59 | | running

test-0000000101 | -40 | demo | 2201058f_£266_11ea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

test-0000000401 | cO- | demo | 2201058f_£f266_1l1ea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

———————————————— e e Bt it T e TP

vtctlclient VExec commerce.2201058f_f266_1lea_bab4_0242c0a8b007 "update
_vt.schema_migrations set migration_status='cancel' where
migration_uuid="'2201058f_£f266_1lea_bab4_0242c0a8b007"' and shard='40-80""

———————————————— fhm—————————————dp

Tablet | RowsAffected |
———————————————— fm————————— =t
test-0000000201 | 1 |
———————————————— fhmm—ome o — == b

vtctlclient VExec commerce.2201058f £f266_11ea_bab4_0242c0a8b007 "select shard,
mysql_table, migration_uuid, started_timestamp, completed_timestamp, migration_status
from _vt.schema_migrations"

———————————————— e e T T T
Tablet | shard | mysql_table | migration_uuid

started_timestamp | completed_timestamp | migration_status |

———————————————— ettt S i R et e e

test-0000000401 | cO- | demo | 2201058f_£f266_1lea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

test-0000000101 | -40 | demo | 2201058f_£f266_11ea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

test-0000000201 | 40-80 | demo | 2201058f_f266_11lea_bab4_0242c0a8b007 | 2020-09-09
08:34:59 | | failed

test-0000000301 | 80-cO | demo | 2201058f_£f266_1l1ea_bab4_0242c0a8b007 | 2020-09-09
06:37:33 | | failed

———————————————— et e et et et

vtctlclient VExec commerce.2201058f_£f266_1lea_bab4_0242c0a8b007 "update
_vt.schema_migrations set migration_status='cancel' where
migration_uuid="'2201058f_£f266_1lea_bab4_0242c0a8b007' and shard='40-80""

<no result>

$

+ -

vtctlclient VExec commerce.2201058f_£f266_11lea_bab4_0242c0a8b007 "select shard, log_path
from _vt.schema_migrations"

________________ B N R R .

Tablet | shard | log_path

test-0000000201 | 40-80 |
1lac2af6e63e:/tmp/online-ddl-2201058f_f266_1llea_bab4_0242c0a8b007 -657478384 |
test-0000000101 | -40 |
e779a82d35d7 :/tmp/online-dd1-2201058f_£266_1lea_bab4_0242c0a8b007-901629215 |
test-0000000401 | cO- |

322

5aad1249ab91:/tmp/online-dd1-2201058f_£f266_1lea_bab4_0242c0a8b007 -039568897 |
| test-0000000301 | 80-cO |
5e7c662679d3:/tmp/online-dd1-2201058f_f266_1lea_bab4_0242c0a8b007 -532703073 |
- +—————— B T T

Unmanaged Schema Changes

Vitess offers multiple approaches to running unmanaged schema changes. Below, we review each of these approaches.
We assume we have a keyspace (schema) called commerce, with a table called demo, that has the following definition:

CREATE TABLE “demo~ (
“id~ int NOT NULL,
“status~ varchar (32) DEFAULT NULL,
PRIMARY KEY (~id~)

) ENGINE=InnoDB

ApplySchema

ApplySchema is a vtctlclient command that can be used to apply a schema change to a keyspace. The main advantage of
using this tool is that it performs some sanity checks about the schema before applying it.

Consider the following examples:

$ vtctlclient ApplySchema -sql "ALTER TABLE demo modify id bigint unsigned" commerce

SHOW CREATE TABLE demo;

CREATE TABLE “demo” (
“id" bigint unsigned NOT NULL,
“status~ varchar (32) DEFAULT NULL,
PRIMARY KEY (~id’)

) ENGINE=InnoDB

In the above, we run a direct, synchronous, blocking ALTER TABLE statement. Knowing the table is in commerce keyspace, Vitess
autodetects the relevant shards, and then autodetects which is the primary server in each shard. It then directly invokes the
ALTER TABLE statement on all shards (concurrently), and the vtctlclient command only returns when all are complete.

Vitess will run some validations:

$ vtctlclient ApplySchema -sql "ALTER TABLE demo add column status int" commerce
E0908 10:35:53.478462 3711762 main.go:67] remote error: rpc error: code = Unknown desc =
schema change failed, ExecuteResult: {
"FailedShards": null,

"SuccessShards": null,

"CurSQLIndex": O,

"Sqls": [

"ALTER TABLE demo add column status int"

1,

"ExecutorErr": "rpc error: code = Unknown desc = TabletManager.PreflightSchema on
zonel-0000000100 error: /usr/bin/mysql: exit status 1, output: ERROR 1060 (42S21) at
line 3: Duplicate column name 'status' : /usr/bin/mysql: exit status 1, output: ERROR

1060 (42S21) at line 3: Duplicate column name 'status' ",
"TotalTimeSpent": 87104194

323

Vitess was able to determine that the migration is invalid because a column named status already exists. The statement never
made it to the MySQL servers. These checks are not thorough, though they cover common scenarios.

If the table is large, then ApplySchema will reject the statement, try to protect the user from blocking their production servers.
You may override that by supplying -allow_long_unavailability as follows:

$ vtctlclient ApplySchema -allow_long_unavailability -sql "ALTER TABLE demo modify id
bigint unsigned" commerce

VTGate

You may run DDL directly from VTGate. For example:
$ mysql -h 127.0.0.1 -P 15306 commerce
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> ALTER TABLE demo ADD COLUMN sample INT;
Query 0K, 0 rows affected (0.04 sec)

Just like in the previous example, Vitess will find out what the affected shards are, what the identity is of each shard’s primary,
then invoke the statement on all shards.

You may apply the change to specific shards by connecting directly to those shards:

$ mysql -h 127.0.0.1 -P 15306 commerce/-80
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> ALTER TABLE demo ADD COLUMN sample INT;
Query 0K, O rows affected (0.04 sec)

In the above we connect to VI'Gate via the mysql command line client, but of course you may connect with any standard
MySQL client or from your applicaiton.

This approach is not recommended for changing large tables.
Directly to MySQL

You can apply schema changes directly to the underlying MySQL shard master instances.

VTTablet will eventually notice the change and update itself. This is controlled by the ~queryserver-config-schema-reload-time
parameter which defaults to 1800 seconds.

You can also explicitly issue the vtctlclient ReloadSchema command to make it reload immediately. Specify a tablet to reload
the schema from, as in:

$ vtctlclient ReloadSchema zonel-0000000100

Users will likely want to deploy schema changes via gh-ost or pt-online-schema-change, which do not block the table. Vitess
offers managed, online schema changes where it automates the invocation and execution of these tools.

SQL Statement Analysis

description: User guides covering analyzing SQL statements
Analyzing SQL statements in bulk

Introduction

This document covers the way the VTexplain tool can be used to evaluate if Vitess is compatible with a list of SQL statements.
Enabling the evaluation of if queries from an existing application that accesses a MySQL database are generally Vitess-compatible.

324

If there are any issues identified they can be used to target any necessary application changes needed for a successful migration
from MySQL to Vitess.

Prerequisites

You can find a prebuilt binary version of the VTexplain tool in the most recent release of Vitess.

You can also build the vtexplain binary in your environment. To build this binary, refer to the Build From Source guide.

Overview

To analyze multiple SQL queries and determine how, or if, Vitess executes each statement, follow these steps:

Gather the queries from your current MySQL database environment
Filter out specific queries

Populate fake values for your queries

Run the VTexplain tool via a script

Add your SQL schema

Add your VSchema to the output file

Run the VTexplain tool and capture the output

Check your output for errors

S I ol o

1. Gather the queries from your current MySQL database environment

These queries should be most, if not all, of the queries that are sent to your current MySQL database over an extended period
of time. You may need to record your queries for days or weeks depending on the nature of your application(s) and workload.
You will need to normalize the queries you will be analyzing. Depending on the scope and complexity of your applications you
may have a few hundred to thousands of distinct normalized queries. To obtain normalized queries you can use common MySQL
monitoring tools like VividCortex, Monyog or PMM.

It is also possible to use the MySQL general query log feature to capture raw queries and then normalize it using post-processing.

2. Filter out specific queries

Remove from your list any unsupported queries or queries from non-application sources. The following are examples of queries
to remove are:

e LOCK/UNLOCK TABLES - These likely come from schema management tools, which VT'Gate obviates.
FLUSH/PURGE LOGS - Vitess performs its own log management.

o performance_schema queries - These queries are not supported by Vitess.

e BEGIN/COMMIT - Vitess supports these statements, but VTexplain does not.

The following is an example pipeline to filter out these specific queries:

cat queries.txt \
| grep -v performance_schema \
| grep -v information_schema \
| grep -v @@ \
| grep -v "SELECT ? $" \
| grep -v "PURGE BINARY" \
| grep -v "“SET" \
| grep -v "TEXPLAIN" \
| grep -v “query \
| grep -v “BEGIN \
| grep -v "“COMMIT \

325

https://github.com/vitessio/vitess/releases/
https://dev.mysql.com/doc/refman/8.0/en/query-log.html

grep -v "“FLUSH \

grep -v "“LOCK \

grep -v "“UNLOCK \

grep -v mysql > queries_for_vtexplain.txt

3. Populate fake values for your queries

Once the queries are normalized in prepared statement style, populate fake values to allow VTexplain to run properly. This is
because vtexplain operates only on concrete (or un-normalized) queries. Doing this by textual substitution is shown below and
typically requires some trial and error. An alternative is to use a MySQL monitoring tool. This tool sometimes has a feature
where it can provide one concrete query example for every normalized query form, which is ideal for this purpose.

If you need to use textual substitution to obtain your concrete queries, the following is an example pipeline you can run:

cat queries.txt \

| perl -p -e 's#\?7 = \7#1 = 1#g' \

| perl -p -e 's#= \7#="1"#g' \

| perl -p -e 's#LIMIT \7#LIMIT 1#g' \

| perl -p -e 's#\> \7#> "1'"#g' \

| perl -p -e 's#IN \(\?\)#IN (1)#g' \

| perl -p -e 's#\? AS ONE#1 AS ONE#g' \

| perl -p -e 's#BINARY \7#BINARY \"1\"#g' \

| perl -p -e 's#\< \7#< "2"#g' \

| perl -p -e 's#, \7#, "1"#g' \

| perl -p -e 's#VALUES \(...\)#VALUES \(1,2\)#g' \

| perl -p -e 's#IN \N(\.\.\.\)#IN \(1,2\)#g"' \

| perl -p -e 's#\- \7 #\- 50 #g' \

| perl -p -e 's#BETWEEN \? AND \?#BETWEEN 1 AND 10#g' \

| perl -p -e 's#LIKE \7 #LIKE \"1\" #g' \

| perl -p -e 's#OFFSET \7#0FFSET 1#g' \

| perl -p -e 's#\7, \.\.\J#EN"IN', \"2\"#g' \

| perl -p -e 's#\/ \7 #\/ \"1\" #g' \
| perl -p -e 's#THEN \? ELSE \?7#THEN \"2\" ELSE \"3\"#g' \
| perl -p -e 's#THEN \? WHEN#THEN \"4\" WHEN#g' \
| perl -p -e 's#SELECT \? FROM#SELECT \"6\" FROM#g' \
| perl -p -e 's#SELECT \? AS#SELECT id AS#g' \
| perl -p -e 's#\ DAYOFYEAR\™ \(\?\)#DAYOFYEAR \("2020-01-20"\)#g"' \
| perl -p -e 's#YEAR \(\?\)#YEAR \("2020-01-01"\)#g' \
| grep -v mysql > queries_for_vtexplain.txt

4. Run the VTexplain tool via a script

In order to analyze every query in your list, create and run a script. The following is an example Python script that assumes a
sharded database with 4 shards. You can adjust this script to match your individual requirements.

$ cat testfull.py
for line in open("queries_for_vtexplain.txt", "r").readlines():
sql = line.strip()
print ("vtexplain -schema-file schema.sql -vschema-file vschema.json -shards 4 -sql
"%s'" % sql)
X
$ python testfull.py > run_vtexplain.sh

An alternative method is to use the ~sql-file option for vtexplain to pass the whole file to a single vtexplain invocation. This
is much more efficient, but we have found that it can be easier to find errors if you perform one vtexplain invocation per SQL

query.

326

If you choose to use the single invocation, it would look something like:

$ vtexplain -schema-file schema.sql -vschema-file vschema.json -shards 4 -sql-file
queries_for_vtexplain.txt

5. Add your SQL schema to the output file

Add your proposed SQL schema to the file created by the script (e.g. schema.sql). The following is an example SQL schema:

$ cat schema.sql

CREATE TABLE “user ™ (
“user_id~ bigint (20) NOT NULL,
“name~ varchar (128) DEFAULT NULL,
“balance ™ decimal (13,4) DEFAULT NULL,
PRIMARY KEY (“user_id’),
KEY “balance™ (balance)

) ENGINE=InnoDB DEFAULT CHARSET=utf$8;

6. Add your VSchema

Add your VSchema to the file created by the script: in this example, the file is named schema. json. The following is an example
VSchema to match the example SQL schema above.

$ cat vschema. json

{
"ks1": {
"sharded": true,
"vindexes": {
"hash": {
"type": "hash"
+
I
"tables": {
"user": {
"column_vindexes": [
{
"column": "user_id",
"name": "hash"
+
]
}
}
}
}

Note that unlike the VSchema used in Vitess, e.g. in vtctlclient GetVSchema and vtctlclient ApplyVSchema, the format
required by vtexplain differs slightly. There is an extra level of JSON objects at the top-level of the JSON format to allow
you to have a single file that represents the VSchema for multiple Vitess keyspaces. In the above example, there is just a single
keyspace called ks1.

7. Run the VTexplain tool and capture the output

This step will generate the output you need to analyze to determine what queries may have issues with your proposed VSchema.
It may take a long time to finish if you have a number of queries.

$ sh -x run_vtexplain.sh 2> vtexplain.output

327

8. Check your output

Once you have your full output in vtexplain.output, use grep to search for the string “ERROR” to review any issues that
VTExplain found.

Example: Scatted across shards In the following example, VT Gate scatters the example query across both shards, and
then aggregates the query results.

$ vtexplain -schema-file schema.sql -vschema-file vschema.json -shards 2 -sql 'SELECT x*
FROM user;'

SELECT * FROM user

1 ks1/-40: SELECT * FROM user 1limit 10001
1 ks1/40-80: SELECT * FROM user limit 10001
1 ks1/80-cO: SELECT * FROM user limit 10001
1 ks1/cO-: SELECT * FROM user limit 10001

This is not an error, but illustrates a few things about the query:

e The query of this type will be scattered across all 4 the shards, given the schema and VSchema.

e The phases of the scatter operation will occur in parallel. This is because the number 1 on the left-hand-side of the output
indicates the ordering of the operations in time. The same number indicates parallel processing.

e The implicit Vitess row limit of 10000 rows is also seen, even though that was not present in the original query.

Example: Query returns an error The following query produces an error because Vitess does not support the AVG function
for scatter queries across multiple shards.

$ vtexplain -schema-file schema.sql -vschema-file vschema.json -shards 4 -sql 'SELECT
AVG (balance) FROM user;'

ERROR: vtexplain execute error in 'SELECT AVG(balance) FROM user': unsupported: in scatter
query: complex aggregate expression

Example: Targeting a single shard The following query only targets a single shard because the query supplies the sharding
key.

$ vtexplain -schema-file schema.sql -vschema-file vschema.json -shards 2 -sql 'SELECT x
FROM user WHERE user_id = 100;"'

1 ks1/80-c0O: SELECT * FROM user WHERE user_id = 100 limit 10001

Analyzing a SQL statement

Introduction

This document covers the way Vitess executes a particular SQL statement using the
[VTExplain tool](../../../reference/vtexplain). This tool works similarly to the MySQL
"EXPLAIN® statement.

Prerequisites

328

You can find a prebuilt binary version of the VTExplain tool in [the most recent release of
Vitess] (https://github.com/vitessio/vitess/releases/).

You can also build the “vtexplain” binary in your environment. To build this binary, refer
to the [Build From Sourcel(../../../contributing/build-from-source) guide.

Overview

To successfully analyze your SQL queries and determine how Vitess executes each statement,
follow these steps:

1. Identify a SQL schema for the statement's source tables
1. Identify a VSchema for the statement's source tables
1. Run the VTExplain tool

If you have a large number of queries you want to analyze for issues, based on a Vschema
’youve created for your database, you can read through a detailed scripted example
[here] (../vtexplain-in-bulk).

1. Identify a SQL schema for tables in the statement

In order to explain a statement, first identify the SQL schema for the tables that the
statement uses. This includes tables that a query targets and tables that a DML
statement modifies.

Example SQL Schema

The following example SQL schema creates two tables, “users” and “users_name_idx~, each of
which contain the columns “user_id ~ and "name , and define both columns as a composite
primary key. The example statements in step 3 include these tables.

CREATE TABLE users(user_id bigint, name varchar(128), primary key(user_id));

CREATE TABLE users_name_idx(user_id bigint, name varchar(128), primary key(name, user_id));

2. Identify a VSchema for the statement's source tables

Next, identify a [VSchemal(../../../concepts/vschema) that contains the
[Vindexes] (../../../reference/vindexes) for the tables in the statement.

The VSchema must use a keyspace name.

VTExplain requires a keyspace name for each keyspace in an input VSchema:

”

“keyspace_name”: { ”__comment*:"Keyspace definition goes here” }

If no keyspace name is present, VTExplain will return the following error:

ERROR: initVtgateExecutor: json: cannot unmarshal bool into Go value of type map[string]json. RawMessage

Example VSchema

The following example VSchema defines a single keyspace "mainkeyspace and three Vindexes,
and specifies vindexes for each column in the two tables “users” and “users_name_idx .
The keyspace name "“"mainkeyspace" precedes the keyspace definition object.

{ “mainkeyspace”: { “sharded”: true, “vindexes”: { “hash”: { “type”: “hash” }, “md5”: { “type”: “unicode_loose_md5”,
“params”: {}, “owner”: ”” } “users_name_ idx”: { “type”: “lookup_hash”, “params”: { “from”: “name”, “table”:

“users_name_ idx”, “to”: “user_id” }, “owner”: “users” } }, “tables”: { “users”: { “column_ vindexes”: [{ “column”: “user_id”,

329

“name”: “hash” }, { “column”: “name”, “name”: “users_name_idx” }], “auto_increment”: null }, “users_name_ idx”: {

N » on

“type”: 74 ”column_ vindexes“: [{ “column”: "name”, "name”: "md5” }],”auto_increment”: null } } } }
3. Run the VTExplain tool

To explain a query, pass the SQL schema and VSchema files as arguments to the “VTExplain’
command .

Example: Explaining a SELECT query

In the following example, the “VTExplain ~ command takes a “SELECT query and returns the
sequence of queries that Vitess runs in order to execute the query:

vtexplain -shards 8 -vschema-file vschema.json -schema-file schema.sql -replication-mode
“ROW?” -output-mode text -sql “SELECT * from users”

SELECT * from users

1 mainkeyspace/-20: select * from users limit 10001 1 mainkeyspace/20-40: select * from users limit 10001 1 mainkeyspace/40-
60: select * from users limit 10001 1 mainkeyspace/60-80: select * from users limit 10001 1 mainkeyspace/80-a0: select * from
users limit 10001 1 mainkeyspace/a0-c0: select * from users limit 10001 1 mainkeyspace/c0-e0: select * from users limit 10001
1 mainkeyspace/e0-: select * from users limit 10001

Wi

In the example above, the output of VTExplain shows the sequence of queries that Vitess runs in order to execute the
query. Each line shows the logical sequence of the query, the keyspace where the query executes, the shard where the
query executes, and the query that executes, in the following format:

[Sequence number] [keyspacel/[shard]: [query]

In this example, each query has sequence number 1, which shows that Vitess executes these in parallel. Vitess
automatically adds the LIMIT 10001 clause to protect against large results.

###+# Example: Explaining an INSERT query

In the following example, the VTExplain command takes an INSERT query and returns the sequence of queries that Vitess
runs in order to execute the query:

““ vtexplain -shards 128 -vschema-file vschema.json -schema-file schema.sql -replication-mode “ROW” -output-mode text
-sql “INSERT INTO users (user_id, name) VALUES(1, ‘john’)”

INSERT INTO users (user_id, name) VALUES(1, ‘john’)

1 mainkeyspace/22-24: begin 1 mainkeyspace/22-24: insert into users name idx(name, user id) values (‘john’, 1) /*
vtgate:: keyspace_id:22c0c¢31d7a0b489a16332a5b32b028bc / 2 mainkeyspace/16-18: begin 2 mainkeyspace/16-18: insert into
users(user_id, name) values (1, ‘john’) / vtgate: keyspace id:166b40b44abadbd6 */ 3 mainkeyspace/22-24: commit 4
mainkeyspace/16-18: commit

Wi

The example above shows how Vitess handles an insert into a table with a secondary lookup Vindex:

* At sequence number 1, Vitess opens a transaction on shard 22-24 to insert the row into the users_name_idx table. *
At sequence number 2, Vitess opens a second transaction on shard 16-18 to perform the actual insert into the users
table. * At sequence number 3, the first transaction commits. * At sequence number 4, the second transaction commits.
#4### Example: Explaining an uneven keyspace

In previous examples, we used the -shards flag to set up an evenly-sharded keyspace, where each shard covers the same
fraction of the keyrange. VTExplain also supports receiving a JSON mapping of shard ranges to see how Vitess would
handle a query against an arbitrarly-sharded keyspace.

To do this, we first create a JSON file containing a mapping of keyspace names to shardrange maps. The shardrange map
has the same structure as the output of running vtctl FindAllShardsInKeyspace <keyspace>.

330

{ "mainkeyspace": { "-80": { "master_alias": { "cell": "test", "uid": 00000000100 },
"master_term_start_time": { "seconds": 1599828375, '"nanoseconds": 664404881 }, "key_range": { "end":

"gA==" }, "is_master_serving": true }, "80-90": { "master_alias": { "cell": "test", "uid":
00000000200 }, "master_term_start_time": { "seconds": 1599828344, "nanoseconds": 868327074 1},
"key_range": { "start": "gA==", "end": "kA==" }, "is_master_serving": true 1}, "90-a0": {

"master_alias": { "cell": "test", "uid": 00000000300 }, "master_term_start_time": { "seconds":
15699828405, "nanoseconds": 152120945 }, "key_range": { "start": "kA==", "end": "oA==" 1},
"is_master_serving": true }, "a0O-e8": { "master_alias": { "cell": "test", "uid": 00000000400 1},
"master_term_start_time": { "seconds": 1599828183, "nanoseconds": 911677983 }, "key_range": {
"start": "oA==", "end": "6A==" }, "is_master_serving": true }, "e8-": { "master_alias": { "cell":
"test", "uid": 00000000500 }, "master_term_start_time": { "seconds": 1599827865, "nanoseconds":
770606551 }, "key_range": { "start": "6A==" }, "is_master_serving": true } }

After having saved that to a file called shardmaps. json:

““ vtexplain -vschema-file vschema.json -schema-file schema.sql -ks-shard-map shardmaps.json -replication-mode “ROW”
-output-mode text -sql “SELECT * FROM users; SELECT * FROM users WHERE id IN (10, 17, 42, 1000);”

SELECT * FROM users

1 mainkeyspace/-80: select * from users limit 10001 1 mainkeyspace/80-90: select * from users limit 10001 1 mainkeyspace/90-a0:
select * from users limit 10001 1 mainkeyspace/a0-e8: select * from users limit 10001 1 mainkeyspace/e8-: select * from users

limit 10001

SELECT * FROM users WHERE id IN (10, 17, 42, 100000)
1 mainkeyspace/-80: select * from users where id in (10, 17, 42) limit 10001 1 mainkeyspace/80-90: select * from users
where id in (100000) limit 10001

See also

e For detailed configuration options for VI Explain, see the VIT'Explain syntax reference.

331

	Region-based Sharding
	Preparation
	Schema
	Region Vindex
	Start the Cluster
	Aliases
	Connect to your cluster
	Insert some data into the cluster
	Examine the data we just inserted

	Concepts
	Cell
	Execution Plans
	Keyspace ID
	Keyspace
	MoveTables
	Identifying Candidate Tables

	Query Rewriting
	Replication Graph
	Shard
	Shard Naming
	Resharding

	Tablet
	Tablet Types

	Topology Service
	Global Topology
	Local Topology

	VSchema
	VStream
	vtctl
	Contribute
	Learning Go
	Learning Vitess

	Build on CentOS
	Install Dependencies
	Build Vitess
	Testing your Binaries
	Common Build Issues

	Build on macOS
	Install Dependencies
	Build Vitess
	Testing your Binaries
	Common Build Issues

	Build on Ubuntu/Debian
	Install Dependencies
	Build Vitess
	Testing your Binaries
	Common Build Issues

	Coding Standards
	Backwards Compatibility
	What does a good PR look like?
	Assigning a Pull Request
	Approving a Pull Request
	Merging a Pull Request

	GitHub Workflow
	Remotes
	Topic Branches
	Committing your work
	Sending Pull Requests
	Addressing Changes

	FAQ
	Configuration
	Does the application need to know about the sharding scheme underneath Vitess?
	I cannot start a cluster, and see these errors in the logs: Could not open required defaults file: /path/to/my.cnf

	Queries
	Can I address a specific shard if I want to?
	How do I choose between master vs. replica for queries?
	There seems to be a 10 000 row limit per query. What if I want to do a full table scan?
	Is there a list of supported/unsupported queries?
	If I have a log of all queries from my app. Is there a way I can try them against Vitess to see how they'll work?

	Vindexes
	Does the Primary Vindex for a tablet have to be the same as its Primary Key?

	Get Started
	Helm Chart (deprecated)
	Prerequisites
	Start a single keyspace cluster
	Setup Port-forward
	Next Steps

	Local Install via Docker
	Check out the vitessio/vitess repository
	Build the docker image
	Run the docker image
	Summary
	Next Steps

	Local Install
	Install MySQL and etcd
	Disable AppArmor or SELinux
	Install Vitess
	Start a Single Keyspace Cluster
	Setup Aliases
	Connect to your cluster
	Summary
	Next Steps

	Vitess Operator for Kubernetes
	Prerequisites
	Install the Operator
	Bring up an initial cluster
	Setup Port-forward
	Create Schema
	Next Steps

	Overview
	Architecture
	Cloud Native
	Vitess on Kubernetes

	History
	Vitess becomes a CNCF project

	Scalability Philosophy
	Small instances
	Durability through replication
	Consistency model
	Multi-cell

	Supported Databases
	MySQL versions 5.6 to 8.0
	MariaDB versions 10.0 to 10.3
	See also

	What Is Vitess
	Features
	Comparisons to other storage options

	Older Version Docs
	Features
	Messaging
	Creating a message table
	Enqueuing messages
	Receiving messages
	Acknowledging messages
	Exponential backoff
	Purging
	Advanced usage
	Undocumented features
	Known limitations

	Replication
	Semi-Sync
	Database Schema Considerations

	Point In Time Recovery
	Point in Time Recovery

	Schema Management
	Reviewing your schema
	Changing your schema

	Schema Routing Rules
	ApplyRoutingRules
	Syntax

	Sharding
	Overview
	Sharding scheme
	Resharding

	Problems with DROP TABLE
	Vitess table lifecycle
	Lifecycle subsets and configuration
	Automated lifecycle
	User-facing DROP TABLE lifecycle
	Tablet throttler
	Why throttler: maintaining low replication lag
	Throttler overview
	Configuration
	API & usage
	Resources

	Topology Service
	Requirements and usage
	Global data
	Local data
	Workflows involving the Topology Service
	Exploring the data in a Topology Service
	Implementations
	Running in only one cell
	Migration between implementations

	Transport Security Model
	Overview
	Caller ID
	gRPC Transport
	MySQL Transport to VTGate

	Two-Phase Commit
	Isolation
	Driver APIs
	Configuring VTTablet
	Configuring MySQL
	Monitoring
	Critical failures
	Alertable failures
	Repairs

	Vindexes
	A Vindex maps column values to keyspace IDs
	Advantages

	Sequences
	Motivation
	When not to Use Auto-Increment
	MySQL Auto-increment Feature
	Vitess Sequences

	VReplication
	Feature description
	VReplicationExec
	Other properties of VReplication
	Monitoring and troubleshooting

	VSchema
	VSchemas describe how to shard data
	Sharded keyspaces require a VSchema
	Sharding Model
	Vindexes
	Sequences
	Reference tables
	Configuration

	MySQL Compatibility
	Transaction Model
	SQL Syntax
	Network Protocol
	Temporary Tables
	Character Set and Collation
	SQL Mode
	Data Types
	Auto Increment
	Extensions to MySQL Syntax

	Programs
	mysqlctl
	Commands
	Options

	vtctl Cell Aliases Command Reference
	Commands
	See Also

	vtctl Cell Command Reference
	Commands
	See Also

	vtctl Generic Command Reference
	Commands
	See Also

	vtctl Keyspace Command Reference
	Commands
	See Also

	vtctl Query Command Reference
	Commands
	See Also

	vtctl Replication Graph Command Reference
	Commands
	See Also

	vtctl Resharding Throttler Command Reference
	Commands
	See Also

	vtctl Schema, Version, Permissions Command Reference
	Commands
	See Also

	vtctl Serving Graph Command Reference
	Commands
	See Also

	vtctl Shard Command Reference
	Commands
	See Also

	vtctl Tablet Command Reference
	Commands
	See Also

	vtctl Topo Command Reference
	Commands
	See Also

	vtctl Workflow Command Reference
	Commands
	See Also

	vtctl
	Commands
	Options

	vtctld
	Example Usage
	Options

	vtexplain
	Example Usage
	Options
	Limitations
	Options

	vttablet
	Example Usage
	Options

	VReplication
	DropSources
	Life of a stream
	Materialize
	MoveTables
	Reshard
	SwitchReads
	SwitchWrites
	VDiff
	VExec
	Overview
	Feature description
	VReplicationExec
	Other properties of VReplication
	Monitoring and troubleshooting

	VReplicationExec
	Workflow
	Resources
	Presentations and Videos
	CNCF Webinar 2020
	MySQL Pre-FOSDEM Day 2020
	KubeCon San Diego 2019
	Highload 2019
	Utah Kubernetes Meetup 2019
	CNCF Meetup Paris 2019
	Percona Live Europe 2019
	Vitess Meetup 2019 @ Slack HQ
	Cloud Native Show 2019
	CNCF Webinar 2019
	Kubecon China 2019
	RootConf 2019
	Kubecon 19 Barcelona
	Percona Live Austin 2019
	Velocity New York 2018
	Percona Live Europe 2017
	Vitess Deep Dive sessions
	Percona Live 2016
	CoreOS Meetup, January 2016
	Oracle OpenWorld 2015
	Percona Live 2015
	Google I/O 2014 - Scaling with Go: YouTube's Vitess

	Vitess Roadmap
	Short Term
	Medium Term

	Troubleshoot
	Elevated query latency on master
	Master starts up read-only
	Vitess sees the wrong tablet as master

	User Guides
	Advanced Configuration
	description: User guides covering advanced configuration concepts
	Authorization
	VTTablet parameters for table ACLs
	Format of the table ACL config file
	Example

	CreateLookupVindex
	Integration with Orchestrator
	Orchestrator configuration
	VTTablet configuration

	LDAP authentication
	Requirements
	Configuration

	Region-based Sharding
	Preparation
	Schema
	Region Vindex
	Start the Cluster
	Aliases
	Connect to your cluster
	Insert some data into the cluster
	Examine the data we just inserted
	Prepare for resharding
	Perform Resharding
	Cutover
	Drop source
	Teardown

	Reparenting
	MySQL requirements
	External Reparenting
	Fixing Replication

	Resharding
	Preparation
	Apply VSchema
	Create new shards
	Start the Reshard
	Validate Correctness
	Switch Reads
	Switch Writes
	Cleanup

	Tracing

	Vitess tracing
	Configuring tracing
	Unmanaged Tablet
	Ensure all components are up
	Start a tablet to correspond to legacy
	Connect via VTGate
	Move legacytable to the commerce keyspace

	User Management and Authentication
	Authentication
	Password format
	UserData
	Multiple passwords
	Other authentication methods

	Configuration
	description: User guides covering basic configuration concepts
	Configuring Components
	Managed MySQL
	Vitess Servers
	VTTablet
	VTGate

	Exporting data from Vitess
	Production Planning
	Provisioning
	Production testing

	Legacy
	description: User guides for features in older version of Vitess
	Horizontal Sharding
	Preparation
	Create new shards
	SplitClone
	Cut over
	Clean up
	Next Steps

	Vertical Split
	Create Keyspace
	Customer Tablets
	VerticalSplitClone
	Cut over
	Clean up
	Next Steps

	Migration
	description: User guides covering migration to Vitess
	Materialize
	Planning to use Materialize
	Create the destination tables
	Start the Materialize (first copy)
	Viewing the workflow while in progress
	Start the Materialize (redacted copy)
	What happened under the covers
	Cleanup
	Recap

	Migrating data into Vitess

	Introduction
	Overview
	Method 1: ``Stop-the-world'':
	Method 2: VReplication from Vitess setup in front of the existing external MySQL database
	Method 3: Application-level migration

	MoveTables
	Planning to Move Tables
	Show our current tablets
	Create new tablets
	Show our old and new tablets
	Start the Move
	Check routing rules (optional)
	Monitoring Progress (optional)
	Validate Correctness (optional)
	Phase 1: Switch Reads
	Interlude: check the routing rules (optional)
	Phase 2: Switch Writes
	Interlude: check the routing rules (optional)
	Reverse workflow
	Drop Sources
	Next Steps

	Operational
	Concepts
	VTTablet Configuration
	Creating a backup
	Restoring a backup
	Managing backups
	Bootstrapping a new tablet
	Backing up Topology Server

	Making Schema Changes
	ApplySchema
	VTGate
	Directly to MySQL

	Upgrading Vitess
	Compatibility
	Upgrade Order
	Canary Testing
	Rolling Upgrades
	Upgrading the Master Tablet

	Making Schema Changes
	The schema change problem
	ALTER TABLE solutions
	Schema change cycle and operation
	Schema change and Vitess
	The various approaches

	Managed, Online Schema Changes
	Syntax
	ApplySchema
	VTGate
	Migration flow and states
	Tracking migrations
	Cancelling a migration
	Retrying a migration
	gh-ost and pt-online-schema-change
	Using gh-ost
	Using pt-online-schema-change
	Throttling
	Table cleanup
	VExec commands for greater control and visibility

	Unmanaged Schema Changes
	ApplySchema
	VTGate
	Directly to MySQL

	SQL Statement Analysis
	description: User guides covering analyzing SQL statements
	Analyzing SQL statements in bulk

	Introduction
	Prerequisites
	Overview
	1. Gather the queries from your current MySQL database environment
	2. Filter out specific queries
	3. Populate fake values for your queries
	4. Run the VTexplain tool via a script
	5. Add your SQL schema to the output file
	6. Add your VSchema
	7. Run the VTexplain tool and capture the output
	8. Check your output

	vtexplain -shards 8 -vschema-file vschema.json -schema-file schema.sql -replication-mode ``ROW'' -output-mode text -sql ``SELECT * from users''
	See also

